- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Facile and Green Synthesis of Graphene-Based Conductive Adhesives via Liquid Exfoliation Process
摘要: In this study, we report a facile and green process to synthesize high-quality and few-layer graphene (FLG) derived from graphite via a liquid exfoliation process. The corresponding characterizations of FLG, such as scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM) and Raman spectroscopy, were carried out. The results of SEM show that the lateral size of as-synthesized FLG is 1–5 μm. The results of TEM and AFM indicate more than 80% of graphene layers is <10 layers. The most surprising thing is that D/G ratio of graphite and FLG are 0.15 and 0.19, respectively. The result of the similar D/G ratio demonstrates that little structural defects were created via the liquid exfoliation process. Electronic conductivity tests and resistance of composite ?lm, in terms of different contents of graphite/polyvinylidene di?uoride (PVDF) and FLG/PVDF, were carried out. Dramatically, the FLG/PVDF composite demonstrates superior performance compared to the graphite/PVDF composite at the same ratio. In addition, the post-sintering process plays an important role in improving electronic conductivity by 85%. The composition-optimized FLG/PVDF thin ?lm exhibits 81.9 S·cm?1. These results indicate that the developed FLG/PVDF composite adhesives could be a potential candidate for conductive adhesive applications.
关键词: conductive adhesives,liquid exfoliation,graphene,?exiable,polyvinylidene ?uoride
更新于2025-09-23 15:23:52
-
Study on the Adhesion Force Between Ga-Doped ZnO Thin Films and Polymer Substrates
摘要: Flexible Ga doped ZnO (GZO) transparent conductive thin films were prepared on polycarbonate (PC) substrates at room temperature by magnetron sputtering. The adhesive property between the GZO film and the PC substrate was investigated quantitatively by the scratch test, which is designed for the quantitative assessment of the mechanical integrity of coated surfaces. The effect of the sputtering pressures on the adhesion forces for the GZO films was investigated. When the sputtering pressure varied from 0.2 to 0.5 Pa, no obvious adhesion force alteration was observed. However, when the sputtering pressure was increased to 0.7 Pa, the adhesion force was decreased. The lowest square resistance of the GZO film was 18.6 Ω/sq. Regardless of the sputtering pressure, the transmittance in the visible light was about 90%. When the sputtering pressure was 0.4 Pa, the optimal figure of merit (ΦTC) was 2.5 × 10?2 Ω?1, indicating that the optimal pressure was 0.4 Pa.
关键词: Adhesion Force,Flexibility,ZnO Transparent Conductive Film
更新于2025-09-23 15:23:52
-
Preparation of Monodispersed Nanoparticles of Transparent Conductive Oxides
摘要: Generally, indium-tin-oxides (ITO) thin film is prepared by the sputtering process with ITO target, but only 20 % of ITO yielded from the target is deposited on the substrate. Namely, about 80 % ITO is exhausted by the deposition elsewhere far from the substrate. The recycling process of indium is limited so that ca. 20 % ITO of the starting material is lost without any recovery. Even if the recycling of ITO has been carried out in this process, we should prepare ITO target of 5 times more than apparent use of ITO on film. If we change it to printing process from the sputtering, the reduction in ITO use is expected as ca. 50 %, considering the increase in film thickness by printing. Our target technology also includes ITO nanoink for the project. As a result, monodispersed ITO nanoparticles (NPs) with a cubic shape were fabricated by using quaternary ammonium hydroxide-assisted metal hydroxide organogels. These NPs have perfect uniformity in size with beautiful shape, and perfect single crystalline structure including Sn. As we were attempted to make thin film with ITO nanoink, it was successfully fabricated below 200 nm in thickness and the resistivity was drastically decreased below 1.0 × 10–3 Ω cm after heat treatments. GZO nanoink as substitute of ITO has also been developed.
关键词: indium tin oxide,transparent conductive oxides,uniform nanoparticles,shape control
更新于2025-09-23 15:23:52
-
Free-standing highly conducting PEDOT films for flexible thermoelectric generator
摘要: Recently, organic thermoelectric (TE) materials especially conducting polymers have attracted increasing attention. In this work, we successfully synthesized ultrafine poly (3,4-ethylenedioxythiophene) (PEDOT) nanowires (NWs) (~10 nm) by a simple self-assembled micellar soft-template method and then obtain highly flexible free-standing PEDOT NW films by vacuum-assisted filtration. The films are with very high electrical conductivity (~1340 S cm?1). After being treated with 6 M H?SO? and then with 1 M NaOH at room temperature, the film shows an enhanced power factor of 46.51 μW m?1 K?2 (Seebeck coefficient of 25.5 μV K?1, electrical conductivity of 715.3 S cm?1), which increases by 54% compared with that of the pristine film. To the best of our knowledge, it outperforms the TE performance of all reported one-dimensional conducting polymer-based films. In addition, the TE performance of the film almost remains unchanged even after being bent for 200 times, indicating excellent flexibility. A flexible TE prototype composed of six strips (7 mm × 30 mm) of the as-prepared PEDOT NW films connected in series shows an output power of 157.2 nW at a temperature difference of 51.6 K. The free-standing PEDOT NW films show promise to a new generation of wearable TE devices.
关键词: Flexible,Thermoelectric,Free-standing,PEDOT,Highly conductive
更新于2025-09-23 15:23:52
-
Characteristics of Ultrathin Ni Films
摘要: Conductive and transparent ultra-thin Nickel films are grown by RF sputtering on fused silica substrates. The characteristics of Ni films (thickness, refractive index, and extinction coefficient) are obtained by fitting multi-angle spectrophotometric and ellipsometric data. Films thickness inferred by X ray reflection (XRR) measurements is in good accordance with ellipsometric results. XPS analysis reveals that Ni metal phase is present in the film surface together with Ni mixed oxide phases, which explains the high electrical stability of such films.
关键词: optical measurements,ultrathin films,transparent conductive films,Ni films
更新于2025-09-23 15:23:52
-
Performance-Enhancing Selector via Symmetrical Multilayer Design
摘要: Two-terminal selectors with high nonlinearity, based on bidirectional threshold switching (TS) behaviors, are considered as a crucial element of crossbar integration for emerging nonvolatile memory and neuromorphic network. Although great efforts have been made to obtain various selectors, existing selectors cannot fully satisfy the rigorous standard of assorted memristive elements and it is in great demand to enhance the performance. Here, a new type of Ag/TaOx/TaOy/TaOx/Ag (x < y) selector based on homogeneous trilayered oxides is developed to attain the required parameters including bidirectional TS operation, a large selectivity of ≈1010, a high compliance current up to 1 mA, and ultralow switching voltages under 0.2 V. Tunable operation voltages can be realized by modulating the thickness of inserted TaOy. All-TaOx-based integrated 1S1R (one selector and one memristor) cells, prepared completely by magnetron sputtering and no need of a middle electrode, exhibit a nonlinear feature, which is quite characteristic for the crossbar devices, avoiding undesired crosstalk current issues. The tantalum-oxide-based homojunctions offer high insulation, low ion mobility, and rich interfaces, which is responsible for the modulation of Ag conductive filaments and corresponding high-performance cation-based selector. These findings might advance practical implementation of two-terminal selectors in emerging memories, especially resistive random access memories.
关键词: conductive filaments,1S1R,multilayers,threshold switching,TaOx,selector
更新于2025-09-23 15:23:52
-
Efficient Conversion of CO <sub/>2</sub> to Methane Photocatalyzed by Conductive Black Titania
摘要: One of the major challenges encountered in CO2 utilization is the development of available and cost-efficient catalysts with sufficient activity, selectivity, and stability for the generation of useful methane. Here, conductive black titania, TiO2@x, is found to be efficient in photocatalyzing the reduction of CO2 to CH4. This unique material comprises a crystalline core–amorphous shell structure (TiO2@TiO2@x) with numerous surface oxygen vacancies, which facilitates the adsorption and chemical activation of CO2 molecules. Under full solar irradiation, the optimized 500-TiO2@x material with narrowed band gap and intermediate states below the conduction band tail exhibits a high space-time yield of CH4 of 14.3 mmol g@1 h@1, with 74 % selectivity and excellent photostability. The present findings can make a significant contribution, not only to develop the surface electron-modified black TiO2 catalyst to boost photocatalytic efficiency, but also to establish a really viable and convenient CH4 production process for CO2 conversion and renewable solar energy storage.
关键词: oxygen vacancies,photocatalysis,carbon dioxide chemistry,conductive black titania,methane generation
更新于2025-09-23 15:23:52
-
Superdomain structure and high conductivity at the vertices in the (111)-oriented epitaxial tetragonal Pb(Zr,Ti)O3 thin film
摘要: Recently, in ferroelectric materials, there have been many experimental efforts to find out more intriguing topological objects and their functionalities, such as conduction property. Here we investigated ferroelectric domain structures and related topological defects in the (111)-oriented epitaxial tetragonal PbZr0.35Ti0.65O3 thin film. Systematic piezoresponse force microscopy measurements revealed that the field-induced polarization switching can form thermodynamically stable superdomain structures composed of nano-sized stripe sub-domains. Within such superdomain structures, we observed the exotic equilateral triangular in-plane flux-closure domains composed of three stripe domain bundles with 120/120/120 degrees of separation. The conductive-atomic force microscopy measurements under vacuum showed that some vertices have significantly higher conductivity compared to other surrounding regions. This work highlights electric field-driven polarization switching and unique crystallographic symmetry (here, three-fold rotational symmetry) can generate exotic ferroelectric domain structures and functional topological defects, such as conductive vertices.
关键词: Vertex,Ferroelectric,Superdomain,Flux-closure domain,Piezoresponse force microscopy,Conductive-atomic force microscopy
更新于2025-09-23 15:23:52
-
Effect of microwave irradiation on the electrical and optical properties of SnO2 thin films
摘要: We report the electrical and optical characteristics of SnO2 thin films irradiated by microwaves (MWs) and grown using atomic layer deposition in a commercial MW oven operating at a frequency of 2.45 GHz. The properties of the MW-irradiated SnO2 thin films were compared with those of the as-deposited SnO2 thin films. After MW irradiation, the conductivity and transparency of the thin films were enhanced. In addition, the samples irradiated for 5 min showed optimal carrier concentration, Hall-mobility, resistivity, and transmittance values of 1.5 × 1020 cm-3, 4.6 cm2/V·s, 8 × 10-3 Ω·cm, and 95.77%, respectively. The improved properties of the MW-irradiated samples were attributed mainly to the formation of an oxygen vacancy in the SnO2 lattice during MW irradiation. Our results can be applied for the fabrication of pure SnO2-based transparent conductive oxides; these oxides are generally doped with other elements.
关键词: SnO2,Transparent Conductive Oxide,Microwave Irradiation,Electrical and Optical Properties
更新于2025-09-23 15:23:52
-
[IEEE 2018 7th Electronic System-Integration Technology Conference (ESTC) - Dresden, Germany (2018.9.18-2018.9.21)] 2018 7th Electronic System-Integration Technology Conference (ESTC) - Integration with Light
摘要: This paper reports the use of Laser-induced Forward Transfer (LIFT) technology for printing of multilayer flexible circuitries and the fabrication of micro-bumps for flip-chip bonding of packaged LEDs and bare die microcomponents. Bonding of passive and functional surface mount devices (SMD) on low-temperature polyethylene terephthalate (PET) foils have been demonstrated using two selective bonding techniques. Firstly, using a high intensity near-infrared (NIR) lamp, a bare die NFC chip was bonded on micro-bumps formed with LIFT printed isotropic conductive adhesive (ICA) within less than a minute. Secondly, using a high intensity Xenon lamp, passive components and packaged LEDs were bonded within 5 seconds on micro-bumps formed with conventional Sn–Ag–Cu (SAC) lead-free alloys. In the both cases, due to selective light absorption, a limited temperature increase was observed in the PET substrates allowing successful bonding of components onto the delicate polyethylene foil substrates using conventional interconnect materials.
关键词: LIFT,low temperature bonding,NIR curing,conductive adhesive,lead-free SAC solder,photonic soldering,flip-chip bonding,laser printing
更新于2025-09-23 15:23:52