- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Engineering bilinear mode coupling in circuit QED: Theory and experiment
摘要: Photonic states of high-Q superconducting microwave cavities controlled by superconducting transmon ancillas provide a platform for encoding and manipulating quantum information. A key challenge in scaling up the platform towards practical quantum computation is the requirement to communicate on demand the quantum information stored in the cavities. It has been recently demonstrated that a tunable bilinear interaction between two cavity modes can be realized by coupling the modes to a bichromatically driven superconducting transmon ancilla, which allows swapping and interfering the multiphoton states stored in the cavity modes [Gao et al., Phys. Rev. X 8, 021073 (2018)]. Here we explore both theoretically and experimentally the regime of relatively strong drives on the ancilla needed to achieve fast SWAP gates but which can also lead to undesired nonperturbative effects that lower the SWAP fidelity. We develop a theoretical formalism based on linear response theory that allows one to calculate the rate of ancilla-induced interaction, decay, and frequency shift of the cavity modes in terms of a susceptibility matrix. We go beyond the usual perturbative treatment of the drives by using Floquet theory, and find that the interference of the two drives can strongly alter the system dynamics even in the regime where the standard rotating wave approximation applies. The drive-induced ac Stark shift on the ancilla depends nontrivially on the drive and ancilla parameters which in turn modify the strength of the engineered interaction. We identify two major sources of infidelity due to ancilla decoherence. (i) Ancilla dissipation and dephasing lead to incoherent hopping among Floquet states which occurs even when the ancilla is at zero temperature; this hopping results in a sudden change of the SWAP rate, thereby decohering the SWAP operation. (ii) The cavity modes inherit finite decay from the relatively lossy ancilla through the inverse Purcell effect; the effect becomes particularly strong when the ac Stark shift pushes certain ancilla transition frequencies to the vicinity of the cavity mode frequencies. The theoretical predictions agree quantitatively with the experimental results, paving the way for using the developed theory for optimizing future experiments and architecture designs.
关键词: decoherence,transmon ancilla,superconducting cavities,ac Stark shift,quantum information,circuit QED,inverse Purcell effect,bilinear mode coupling,SWAP gates,Floquet theory
更新于2025-09-23 15:23:52
-
Optimized decoherence suppression of tripartite entanglement in finite temperature environments using weak measurement and quantum measurement reversal
摘要: In practical application, since quantum entanglement is inevitably destroyed by thermal noise resulted from environment, protecting entanglement from decoherence in thermal bath environment becomes a critically important issue in the field of quantum information. In this work, we propose a scheme to protect the tripartite Greenberger–Horne–Zeilinger (GHZ) entanglement state subjected to the generalized amplitude damping (GAD) channel based on the quantum technique of weak measurement (WM) and quantum measurement reversal (QMR). By optimizing the strengths of WM and QMR, the decoherence caused by the channel can be effectively suppressed. The results show that after performing the optimal pre- and post-channel weak measurement, the negativity of the GHZ state can be effectively improved with a certain probability, and the phenomenon of sudden death can be delayed to a certain degree. This scheme can be applied to the decoherence suppression of GAD channel at finite temperature.
关键词: generalized amplitude damping channel,weak measurement,Decoherence suppression,tripartite entanglement.
更新于2025-09-23 15:22:29
-
Optomechanical damping basis
摘要: We present a closed-form analytical solution to the eigenvalue problem of the Liouville operator generating the dissipative dynamics of the standard optomechanical system. The corresponding Lindblad master equation describes the dynamics of a single-mode field inside an optical cavity coupled by radiation pressure to its moving mirror. The optical field and the mirror are in contact with separate environments, which are assumed at zero and finite temperature, respectively. The optomechanical damping basis refers to the exact set of eigenvectors of the generator that, together with the exact eigenvalues, are explicitly derived. Both the weak- and the strong-coupling regime, which includes combined decay mechanisms, are solved in this work.
关键词: Open quantum systems,Decoherence,Optomechanics
更新于2025-09-23 15:22:29
-
Decoherence of the Radiation from an Accelerated Quantum Source
摘要: Decoherence is the process via which quantum superposition states are reduced to classical mixtures. Decoherence has been predicted for relativistically accelerated quantum systems; however, examples to date have involved restricting the detected field modes to particular regions of space-time. If the global state over all space-time is measured, then unitarity returns and the decoherence is removed. Here, we study a decoherence effect associated with accelerated systems that cannot be explained in this way. In particular, we study a uniformly accelerated source of a quantum field state—a single-mode squeezer. Even though the initial state of the field is vacuum (a pure state) and the interaction with the quantum source in the accelerated frame is unitary, we find that the final state detected by inertial observers appears to be decohered, i.e., in a mixed state. This unexpected result may indicate new directions in resolving inconsistencies between relativity and quantum theory. We extend this result to a two-mode state and find that entanglement is also decohered.
关键词: Unruh Effect,Quantum Field Theory,Accelerated Systems,Decoherence,Quantum Source
更新于2025-09-23 15:22:29
-
Nonadiabatic Geometric Quantum Computation with Parametrically Tunable Coupling
摘要: Nonadiabatic geometric quantum computation is promising as it is robust against certain types of local noises. However, its experimental implementation is challenging due to the need for complex control on multilevel and/or multiple quantum systems. Here, we propose to implement it on a two-dimensional square superconducting qubit lattice. In the construction of our geometric quantum gates, we only use the simplest and experimentally accessible control over the qubit states of the involved quantum systems, without introducing any auxiliary state. Specifically, our scheme is achieved by parametrically tunable all-resonant interaction, which leads to high-fidelity quantum gates. Meanwhile, this simple implementation can be conveniently generalized to a composite scenario, which can further suppress the systematic error during the gate operations. In addition, universal nonadiabatic geometric quantum gates in decoherence-free subspace can also be realized based on the tunable coupling between only two transmon qubits, without consulting multiple qubits and only using two physical qubits to encode a logical qubit. Therefore, our proposal provides a promising way to achieve high-fidelity geometric manipulation for robust solid-state quantum computation.
关键词: decoherence-free subspace,parametrically tunable coupling,Nonadiabatic geometric quantum computation,superconducting qubit lattice
更新于2025-09-23 15:21:21
-
Dynamics of an open double quantum dot system via quantum measurement
摘要: We study the dynamics of a double quantum dot (DQD) system interacting with a Gaussian white noise (GWN) environment which is measured by a quantum point contact (QPC) device. With both the transverse and longitudinal noise taken into account, we utilize an effective method by adding an additional Bloch vector to calculate the cumulant generating functions of the electron transfer in the QPC detector based on the full counting statistics. We study the average detector current, Fano factor, and average waiting time of the electron transfer in the presence of decoherence effects of the DQD system caused by both the QPC and the GWN environment. It indicates that the decoherence effects arising from the QPC and the GWN environment have obviously different influences on the electron transfer detected by the QPC device in both short-time and long-time limits. It is shown that the measurement process would localize the electron in a DQD in a short time and that the distribution of the average current and Fano factor versus level displacement in long-time limit are broadened due to the interaction between the system and GWN environment, which provides a reliable method to explore the dynamical behavior of an open quantum system and to extract the characteristics of the environment by analyzing the detector outcome. Our results provide theoretical support for studies of quantum measurement in a semiconductor device affected by a fluctuant environment.
关键词: full counting statistics,Gaussian white noise,quantum point contact,double quantum dot,decoherence
更新于2025-09-23 15:21:01
-
Toward the laser control of electronic decoherence
摘要: Controlling electronic decoherence in molecules is an outstanding challenge in chemistry. Recent advances in the theory of electronic decoherence [B. Gu and I. Franco, J. Phys. Chem. Lett. 9, 773 (2018)] have demonstrated that it is possible to manipulate the rate of electronic coherence loss via control of the relative phase in the initial electronic superposition state. This control emerges when there are both relaxation and pure-dephasing channels for decoherence and applies to initially separable electron–nuclear states. In this paper, we demonstrate that (1) such an initial superposition state and the subsequent quantum control of electronic decoherence can be created via weak-field one-photon photoexcitation with few-cycle laser pulses of definite carrier envelope phase (CEP), provided the system is initially prepared in a separable electron–nuclear state. However, we also demonstrate that (2) when stationary molecular states (which are generally not separable) are considered, such one-photon laser control disappears. Remarkably, this happens even in situations in which the initially factorizable state is an excellent approximation to the stationary state with fidelity above 98.5%. The laser control that emerges for initially separable states is shown to arise because these states are superpositions of molecular eigenstates that open up CEP-controllable interference routes at the one-photon limit. Using these insights, we demonstrate that (3) the laser control of electronic decoherence from stationary states can be recovered by using a two-pulse control scheme, with the first pulse creating a vibronic superposition state and the second one inducing interference. This contribution advances a viable scheme for the laser control of electronic decoherence and exposes a surprising artifact that is introduced by widely used initially factorizable system-bath states in the field of open quantum systems.
关键词: electronic decoherence,few-cycle laser pulses,laser control,carrier envelope phase,vibronic superposition state,quantum control
更新于2025-09-23 15:21:01
-
Quantum correlation interferometry in reflection: Application to the quantum–classical transition, decoherence, and indirect measurement
摘要: A many-body interferometer is described in which all of its components are treated as quantum objects. It consists of particles reflecting elastically from a “mirror.” Quantum correlation is a consequence of conservation of energy and momentum while interference occurs when the order in which the non-local particles reflect is indeterminate. The resulting superposition exhibits correlated interference with diverse characteristics depending on the structure of the many-body wave group. Two non-local microscopic particles reflecting from a mesoscopic “mirror” illustrate unique features of this correlation interferometer. The microscopic momentum exchanged then results in small displacements of the superposed mesoscopic mirror substates, which mitigates experimental difficulties in determining the quantum-classical boundary. Quantum behavior of this mesoscopic mirror, evident in indirect measurements involving correlations between only the reflecting microscopic particles, disappears for a classical mirror which cannot exist in such superposition states.
关键词: interferometry,indirect measurement,decoherence,quantum-classical transition,quantum correlation
更新于2025-09-23 15:21:01
-
Implementing a multi-target-qubit controlled-not gate with logical qubits outside a decoherence-free subspace and its application in creating quantum entangled states
摘要: In general, implementing a multi-logical-qubit gate by manipulating quantum states in a decoherence-free subspace (DFS) becomes more complex and difficult when increasing the number of logical qubits. In this work, we propose an idea to realize quantum gates by manipulating quantum states outside their DFS but having the states of the logical qubits remain in their DFS before and after the gate operation. This proposal has the following features: (i) because the states are manipulated outside the DFS, the multiqubit gate implementation can be simplified when compared to realizing a multiqubit gate via manipulating quantum states within the DFS, which usually requires unitary operations over a large DFS, and (ii) because the states of the logical qubits return to the DFS after the gate operation, the errors caused by decoherence during the gate operation are not accumulated for a long-running calculation, and the states of the logical qubits are immune to decoherence when they are stored. Based on this proposal, we then present a way for realizing a multi-target-qubit controlled-NOT gate using logical qubits encoded in a decoherence-free subspace against collective dephasing. This gate is realized by employing qutrits (three-level quantum systems) placed in a cavity or coupled to a resonator. This proposal has the following advantages: (i) the states of the logical qubits return to their DFS after the gate operation; (ii) the gate can be implemented with only a few basic operations; (iii) the gate operation time is independent of the number of logical qubits; (iv) this gate can be deterministically implemented because no measurement is needed; (v) the intermediate higher-energy level for all qutrits is not occupied during the entire operation, thus decoherence from this level is greatly suppressed; (vi) this proposal is universal and can be applied to realize the proposed gate using natural atoms or artificial atoms (e.g., quantum dots, nitrogen-vacancy centers, and various superconducting qutrits, etc.) placed in a cavity or coupled to a resonator. As an application, we also show how to apply this gate to create a Greenberger-Horne-Zeilinger (GHZ) entangled state of multiple logical qubits encoded in DFS, and further investigate the experimental feasibility for creating the GHZ state of three logical qubits in the DFS, by using six superconducting transmon qutrits coupled to a one-dimensional coplanar waveguide resonator.
关键词: decoherence-free subspace,qutrits,quantum gates,multi-target-qubit controlled-NOT gate,GHZ entangled states
更新于2025-09-23 15:19:57
-
Time dependent correlations of entangled states with nondegenerate branches and possible experimental realization using singlet fission
摘要: The spin-entangled exciton states produced by singlet fission provide an experimental route to generate entangled states with nondegenerate branches. Nondegenerate entangled pair states possess an internal "clock" that leads to quantum beating in various detected quantities. The implications of this internal clock for Bell’s inequality measurements and correlated particle detection are analyzed using two- and three-state spin models. In a Bell’s inequality experiment, we find that the choice of detection times can determine whether quantum or classical correlations are observed. The conditions under which the detection events could be time- or spacelike separated are analyzed in order to clarify how the temporal evolution of one particle can influence the time-dependent detection probability of the other. Possible routes to the detection of individual correlated triplet excitons are discussed, emphasizing both physical questions concerning the separation and propagation of triplet excitons over macroscopic distances and experimental challenges concerning decoherence, detection, and interpretation of the signals. We argue that spin-entangled triplet exciton states produced by singlet fission could provide a new way to probe entangled state detection and collapse, complementing schemes based on polarization-entangled photon states.
关键词: detection,Bell’s inequality,correlated particle detection,spin-entangled exciton states,nondegenerate branches,triplet excitons,quantum beating,singlet fission,decoherence
更新于2025-09-12 10:27:22