修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

1 条数据
?? 中文(中国)
  • Origin of anisotropy and compositional dependence of phonon and electron transport in ZnO based natural superlattices and role of atomic layer interfaces

    摘要: Reaction of ZnO with trivalent ions can form natural superlattice (SL) compounds, which possess unusual structural characteristics and strong anisotropic physical transport properties. In this work, by synthesizing strongly textured bulk polycrystals of pure SL phases and performing characterization and measurements for both in-plane and cross-sectional directions, we revealed the strongly crystal orientation dependent transport properties. The observed compositional or SL interface spacing dependent electrical conductivity is largely attributed to the overall doping of ZnO wurtzite regions. The atomic layer SL interfaces are phonon barriers, and the interfacial thermal (Kapitza) resistance depends on SL interface spacing. The transport direction perpendicular to these SL interfaces are electron-conductive paths with remarkably higher electron mobility. There are electron potential barriers associated with these atomic layer SL interfaces. The effective and absolute potential barrier heights are determined, which are proportional to the natural conduction band discontinuities. The current study provides new findings and knowledge about the role of SL interfaces in phonon and electron transport process in these ZnO based natural SLs. The present work can be useful and inspiring to design and modify complex layer-structured compounds, including synthetic superlattice systems, for a variety of applications where energy carriers transport is involved.

    关键词: Interfaces,Superlattices,Electron potential barrier,Interfacial thermal (Kapitza) resistance,Thermal conductivity,ZnO

    更新于2025-11-21 11:03:13