- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Photonic Titanium dioxide film obtained from hard template with chiral nematic structure for environmental application
摘要: In the present work, mesoporous TiO2 with a photonic structure was elaborated using cellulose nanocrystals (CNCs) as a biotemplate by two-step hard template methods. This strategy enables to replicate the chiral nematic (CN) structure of the photonic films (biotemplate) in TiO2 films. A series of iridescent CNCs films with different weight ratios of silica/CNCs composite photonic films were prepared via evaporation induced self-assembly (EISA) method. The films showed iridescent color and tuneable Bragg reflection wavelengths by solely changing the ratio between the silica and the CNCs biotemplate. Polarized optical microscopy (POM) performed on hydride SiO2/CNCs films showed a birefringence and typical fingerprint of chiral nematic structure. This birefringence was also observed for TiO2 films obtained using SiO2 films as a hard template, which suggested the transfer of the chiral nematic structure in TiO2 materials. Afterwards, their optical, morphological and electronic properties were studied by scanning electron microscope (SEM), POM, energy-dispersive X-ray spectroscope (EDX) and time resolved microwave conductivity (TRMC). The photocatalytic activities were evaluated by following the phenol degradation using high performance liquid chromatography (HPLC). The results showed that the structuration of the TiO2 film using a chiral nematic SiO2 film as hard template enhances the photocatalytic performance compared to non-structured mesoporous TiO2.
关键词: hard template,cellulose nanocrystals,iridescent film,evaporation induced self-assembly,light harvesting,phenol degradation,chiral nematic structure
更新于2025-09-23 15:22:29
-
Investigation of Well-Defined Pinholes in TiO2 Electron Selective Layers Used in Planar Heterojunction Perovskite Solar Cells
摘要: The recently introduced perovskite solar cell (PSC) technology is a promising candidate for providing low-cost energy for future demands. However, one major concern with the technology can be traced back to morphological defects in the electron selective layer (ESL), which deteriorates the solar cell performance. Pinholes in the ESL may lead to an increased surface recombination rate for holes, if the perovskite absorber layer is in contact with the fluorine-doped tin oxide (FTO) substrate via the pinholes. In this work, we used sol-gel-derived mesoporous TiO2 thin films prepared by block co-polymer templating in combination with dip coating as a model system for investigating the effect of ESL pinholes on the photovoltaic performance of planar heterojunction PSCs. We studied TiO2 films with different porosities and film thicknesses, and observed that the induced pinholes only had a minor impact on the device performance. This suggests that having narrow pinholes with a diameter of about 10 nm in the ESL is in fact not detrimental for the device performance and can even, to some extent improve their performance. A probable reason for this is that the narrow pores in the ordered structure do not allow the perovskite crystals to form interconnected pathways to the underlying FTO substrate. However, for ultrathin (~20 nm) porous layers, an incomplete ESL surface coverage of the FTO layer will further deteriorate the device performance.
关键词: electron selective layer,pinhole,perovskite solar cell,dip coating,evaporation-induced self-assembly,mesoporous TiO2
更新于2025-09-16 10:30:52
-
Elaboration of microporous CeO2 thin layers having nanocrystallites network controlled by Pluronic P123: Impact of key experimental parameters
摘要: Microporous ceria thin ?lms having nanocrystallites network were synthesized by evaporation-induced self-assembly process, using P123 amphiphilic copolymer as structure-directing agent. The impact of key experimental parameters, i.e., the sol ageing, the relative humidity (RH), the thermal treatment, on the thin layer elaboration were investigated. The results show that the organization of the nanoparticles is possible for a sol ageing time lower than 16 days and that the size of the mesophase within the thin layer increases with the relative humidity ?xed during the ?lm deposition. Finally, an increase of the thermal treatment temperature from 300 to 1000 °C leads to the formation of ?uorite-like dioxide material coupled with a loss of nanocrystallites organization and porosity due to the increase of the size of the crystallites. This loss of nanocrystallites organization is more drastic in the direction perpendicular to the surface and less pronounced along the surface. Thus, a compromise between the crystallization and the preservation of the porosity needs to be found.
关键词: relative humidity,P123 amphiphilic copolymer,evaporation-induced self-assembly,nanocrystallites network,thin films,thermal treatment,Microporous ceria,sol ageing
更新于2025-09-16 10:30:52
-
Synthesis, Characterization and Photocatalysis of Mesoporous TiO2
摘要: The mesoporous TiO2 nanoparticulate has been prepared by evaporation induced self-assembly method using EO-PO type polyether P123 as a template. The small angle X-ray diffraction, wide angle X-ray diffraction, high-resolution transmission electron microscopy and N2 isothermal adsorption-desorption are used to study the microstructure and morphology of the as-synthesized mesoporous TiO2. The results demonstrate that the mesoporous TiO2 belongs to anatase and the size is 20-30 nm. The sample is prepared using P123 as a template with average pore size distribution of 11.54 nm, specific surface area of 84.83 m2/g and pore volume of 0.234 cm3/g. The as-synthesized mesoporous TiO2 exhibits remarkably high photocatalytic activity of 93.6 % in decomposing formaldehyde under ultraviolet light irradiations for 90 min. This work provides a basic experimental process for the preparation of mesoporous TiO2, which will possess a broad prospect in terms of the applications in improving indoor air quality.
关键词: Photocatalysis,Evaporation induced self-assembly,Mesoporous TiO2,Formaldehyde
更新于2025-09-04 15:30:14