- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Characterization of a double Time-Of-Flight detector system for accurate velocity measurement in a storage ring using laser beams
摘要: The Isochronous Mass Spectrometry (IMS) is a powerful tool for mass measurements of exotic nuclei with half-lives as short as several tens of micro-seconds in storage rings. In order to improve the mass resolving power while preserving the acceptance of the storage ring, the IMS with two Time-Of-Flight (TOF) detectors has been implemented at the storage ring CSRe in Lanzhou, China. Additional velocity information beside the revolution time in the ring can be obtained for each of the stored ions by using the double TOF detector system. In this paper, we introduced a new method of using a 658 nm laser range finder and a short-pulsed ultra-violet laser to directly measure the distance and time delay difference between the two TOF detectors which were installed inside the 10?11 mbar vacuum chambers. The results showed that the distance between the two ultra-thin carbon foils of the two TOF detectors was ranging from 18032.5 mm to 18035.0 mm over a measurable area of 20×20 mm2. Given the measured distance, the time delay difference which comes with signal cable length difference between the two TOF detectors was measured to be ??????????????1?2 = 99(26) ps. The new method has enabled us to use the speed of light in vacuum to calibrate the velocity of stored ions in the ring. The velocity resolution of the current double TOF detector system at CSRe was deduced to be ??(??)∕?? = 4.4 × 10?4 for laser light, mainly limited by the time resolution of the TOF detectors.
关键词: Ultra-high vacuum,Ultra-thin carbon foil,TOF detectors,Velocity measurement,Laser range-finder,ps-pulsed UV laser
更新于2025-11-25 10:30:42
-
Fe Foil-Guided Fabrication of Uniform Ag@AgX Nanowires for Sensitive Detection of Leukemia DNA
摘要: Herein, we report a novel Fe foil guided, in-situ etching strategy for the preparation of highly uniform Ag@AgX (X = Cl, Br) nanowires (NWs) and applied the photoelectric-responsive materials for sensitive photoelectrochemical (PEC) detection of Leukemia DNA. The Ag@AgX NWs formation process was discussed from the redox potential and Ksp value. The fabricated PEC platform for sensing Leukemia DNA showed good assay performance with a wide linear range (0.1 pM to 50 nM) and low detection limit of 0.033 pM. We envision that our Fe foil-guided synthetic method could be applied to synthesize more photoactive materials for sensitive PEC detections.
关键词: Leukemia DNA,photoelectrochemical detection,in-situ,Br) nanowires,Ag@AgX (X = Cl,etch,Fe foil
更新于2025-09-23 15:23:52
-
Manufacturing profile-free copper foil using laser shock flattening
摘要: Copper foil is a key material of printed circuit boards and plays an important role in the conductance of electric circuits and interconnection of electronic components. When high-frequency signals were transmitted in rough copper foil wires, the conductor resistance, wire loss, and signal loss increased because of the skin effect. To reduce the negative influence of the skin effect and improve the quality of the copper foil, a laser shock flattening (LSF) method was proposed to manufacture profile-free copper foil with high performance. It was concluded that the better flattening effect for large-area profile-free copper foil could be achieved at a pulse energy of 0.25 J and an overlap rate of 25%, and its surface roughness decreased by 67.0% from 52.1 nm to 17.2 nm. Subsequently, to determine the mechanism for the flattened deformation of copper foil induced by LSF, the microstructures of the copper foil before and after flattening were characterised using transmission electron microscopy. A higher dislocation density and a few deformation twins were found in the profile-free copper foil. Ultimately, nano-indentation, micro-tensile, and electrochemical corrosion tests indicated that the mechanical properties and corrosion resistance of the copper foil were significantly improved by LSF. This technique would enable the successful fabrication of large-area profile-free copper foil with high performance for the emerging applications of ultra-high-frequency signal communication and printed circuit board manufacture.
关键词: Corrosion resistance,Mechanical properties,Flattened deformation mechanism,Microstructures,Laser shock flattening,Profile-free copper foil
更新于2025-09-23 15:21:01
-
Aluminum foil as a substrate for metal enhanced fluorescence of bacteria labelled with quantum dots, shows very large enhancement and high contrast
摘要: Very high surface/metal enhanced fluorescence was observed for E. coli single bacteria cells labeled with composite CdSeS/ZnS quantum dots (QDs) on three substrates: aluminum foil, aluminum film and gold film. The enhancement factors relative to maximum fluorescence intensity on glass for those substrates were in the range of several hundred (up to 500) for two-excitation wavelengths 532 and 633 nm. Contrast as a ratio of signals from QD labeled to signals of QD unlabeled (control) cells was also in the range of 100 s for those substrates and the highest contrast of 370 was observed on Al film. When CdTe QDs were used for labelling cells on all substrates or when fluorescence from cells with both QDs was measured on silver film, low or no enhancement was observed. Overall, untreated aluminum foil demonstrated great potential as low-cost substrate for surface/metal enhanced fluorescence, which delivers even more reproducible signal than gold film.
关键词: E. coli,Bacteria,Enhancement facor,Quantum dots,Single bacterial cell detection,Metal enhanced fluorescence,Contrast,Surface enhanced fluorescence,Aluminum foil,QD toxicity
更新于2025-09-23 15:21:01
-
Young’s modulus and fatigue investigation of aluminum nitride films deposited on 304 stainless steel foils using micro-fabricated cantilevers
摘要: Aluminum nitride based (AlN-based) piezoelectric vibration energy harvesters (PVEHs) have been received much attention in the power generation for the device in microelectromechanical systems (MEMS). During the long-time vibration, PVEHs are suffering cyclically dynamic stress. This may result in the defect of the materials, and finally cause the failure of the device. To achieve a reliable design of the device that can work for a long time without failure, the investigation on the mechanical properties of Young’s modulus and fatigue were conducted for AlN films deposited on 304 stainless steel (SUS 304) foils in this study. Two kinds of materials were tested, SUS 304 foils with a thickness of 50 μm (SUS 304 (50 μm)) and a composite material of AlN films deposited on both sides of SUS 304 foils (AlN (1 μm)/ SUS 304 (50 μm)/ AlN (1 μm) structure). The samples were micro-fabricated to cantilevers. Young’s modulus was measured by the micro-cantilever resonance method. The resonant bending fatigue testing method was used to investigate the fatigue properties of the materials. The displacement amplitude of the samples was recorded during the tests. A new criterion by using the change of amplitude versus number of cycles was proposed to define the fatigue life. As results, the Young’s modulus was 184.9 and 342.9 MPa, for SUS 304 foil and AlN film, respectively. Stress-cycle (S-N) curves were plotted by using the proposed criterion successfully. The fatigue strength of SUS 304 foils and the material with AlN/ SUS 304/ AlN structure was estimated to be 294 and 327 MPa, respectively. Fatigue failures of stable crack, intrusions and extrusions, and slip bands, appeared on the surface of SUS 304 foils after the long time vibration. No fatigue failure or surface defect was observed on AlN films.
关键词: 304 stainless steel foil,aluminum nitride film,Young’s modulus,fatigue,micro-fabricated cantilever
更新于2025-09-23 15:21:01
-
Effect of surface modification and laser repetition rate on growth, structural, electronic and optical properties of GaN nanorods on flexible Ti metal foil
摘要: The effect of flexible Ti metal foil surface modification and laser repetition rate in laser molecular beam epitaxy growth process on the evolution of GaN nanorods and their structural, electronic and optical properties has been investigated. The GaN nanostructures were grown on bare- and pre-nitridated Ti foil substrates at 700 °C for different laser repetition rates (10–30 Hz). It is found that the low repetition rate (10 Hz) promotes sparse growth of three-dimensional inverted-cone like GaN nanostructures on pre-nitridated Ti surface whereas the entire Ti foil substrate is nearly covered with film-like GaN consisting of large-sized grains for 30 Hz growth. In case of the GaN growth at 20 Hz, uniformly-aligned, dense (~8 × 109 cm?2) GaN nanorods are successfully grown on pre-nitridated Ti foil whereas sparse vertical GaN nanorods have been obtained on bare Ti foil under similar growth conditions for both 20 and 30 Hz. X-ray photoemission spectroscopy (XPS) has been utilized to elucidate the electronic structure of GaN nanorods grown under various experimental conditions on Ti foil. It confirms Ga–N bonding in the grown structures, and the calculated chemical composition turns out to be Ga rich for the GaN nanorods grown on pre-nitridated Ti foil. For bare Ti substrates, a preferred reaction between Ti and N is noticed as compared to Ga and N leading to sparse growth of GaN nanorods. Hence, the nitridation of Ti foil is a prerequisite to achieve the growth of dense and aligned GaN nanorod arrays. The X-ray diffraction, high resolution transmission electron microscopy and Raman studies revealed the c-axis growth of wurtzite GaN nanorods on Ti metal foil with good crystallinity and structural quality. The photoluminescence spectroscopy showed that the dense GaN nanorod possesses a near band edge emission at 3.42 eV with a full width at half maximum of 98 meV at room temperature. The density-controlled growth of GaN nanorods on a flexible substrate with high structural and optical quality holds promise for potential applications in futuristic flexible GaN based optoelectronics and sensor devices.
关键词: Ti metal foil,laser molecular beam epitaxy,optical properties,GaN nanorods,structural properties,surface modification,electronic properties,laser repetition rate
更新于2025-09-23 15:19:57
-
Metal-Reduced WO3a??x Electrodes with Tunable Plasmonic Resonance for Enhanced Photoelectrochemical Water Splitting
摘要: Photoelectrochemical (PEC) water splitting is one of the most promising green technologies for producing renewable clean hydrogen energy. Developing plasmonic semiconductors with tunable plasmonic resonance to visible light has drawn increasing attention in view of utilizing abundant low-energy photons for solar-to-chemical conversion. Herein, we demonstrate for the first time that the WO3 electrode can be partly reduced by various metal foils in acid solution, showing strong localized surface plasmon resonance (LSPR) in the visible-to-near-infrared (Vis–NIR) region. The LSPR can be precisely tuned by using metal foils with different standard electrode potentials for different reaction times, and the LSPR peak position strongly depends on the concentration of W5+ in the WO3?x electrodes. A photocurrent density of 0.79 mA·cm?2 at 1.23 VRHE, which is twice that of pristine one, is obtained over an optimally reduced WO3?x electrode. The enhanced PEC water splitting performance is ascribed to the increased light absorption, conductivity and charge carrier concentration.
关键词: photoelectrochemical water splitting,semiconductor,plasmonic resonance,metal foil,tungsten oxide
更新于2025-09-23 15:19:57
-
Terahertz radiation enhanced by target ablation during the interaction of high intensity laser pulse and micron-thickness metal foil
摘要: When an ultra-intense relativistic laser is irradiated on a solid target, terahertz (THz) pulses can be generated by coherent transition radiation when the laser-driven electron beams cross the rear surface of the target. The radiation energy depends on the number and energy of the electrons. By introducing a milli-joule picosecond ablation laser pulse, an underdense preplasma with a scale length of micrometers is generated at the front surface of the target. Electron beams with more charge and higher energy can be produced during the interaction between the following main laser pulse and the preplasma, which enhance the THz radiation and affect the radiation angle. Two dimensional particle-in-cell simulations demonstrate the improvement of electron beams and a nearly tenfold enhancement of THz radiation energy is observed.
关键词: high intensity laser pulse,particle-in-cell simulations,coherent transition radiation,terahertz radiation,target ablation,micron-thickness metal foil
更新于2025-09-19 17:13:59
-
DEFORMATION ANALYSIS OF H62 Cu ALLOY FOIL SUBJECTED TO MULTI-PULSED LASER DYNAMIC FORMING: SIMULATIONS
摘要: By utilizing the ABAQUS software, this paper simulates and analyzes the forming of the H62 foil subjected to multi-pulse laser dynamic forming (LDF). The Johnson–Cook failure mode is adopted to predict the fracture threshold value of the H62 foil. Compared with the single-pulsed LDF, the multi-pulsed LDF improves the limit depth and forming quality of the foil e?ectively. With the increase of impact number, the uniformity of foil is e?ectively improved. Appropriate peak pressure and impact number are important to increase limit forming depth and improve forming quality.
关键词: finite element analysis,Laser dynamic forming,H62 Cu alloy foil,limit forming depth,multi impacts
更新于2025-09-19 17:13:59
-
Absorption and opacity threshold for a thin foil in a strong circularly polarized laser field
摘要: We show that a commonly accepted transparency threshold for a thin foil in a strong circularly polarized normally incident laser pulse needs a refinement. We present an analytical model that correctly accounts for laser absorption. The refined threshold is determined not solely by the laser amplitude, but by other parameters that are equally or even more important. Our predictions are in perfect agreement with particle-in-cell simulations. The refined criterion is crucial for configuring laser plasma experiments in the high-field domain. In addition, an opaque foil steepens the pulse front, which can be important for numerous applications.
关键词: particle-in-cell simulations,transparency threshold,circularly polarized laser field,laser absorption,thin foil
更新于2025-09-19 17:13:59