修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
研究主题
  • parasitic patches
  • Direct coupled
  • gap coupled
  • hybrid coupled
  • composite mode
应用领域
  • Electronic Science and Technology
机构单位
  • SVKM’s DJSCE
  • DIAT
362 条数据
?? 中文(中国)
  • Characteristics of multi-pass narrow-gap laser welding of D406A ultra-high strength steel

    摘要: A universal and applicable method to predict bonding quality in narrow-gap laser beam filler wire welding of D406A ultra-high strength steel was presented. Defect-free joint could be achieved under the predicted optimal welding condition, while the production efficiency of narrow-gap laser beam filler wire welding under optimized welding condition was about 3.75 times that of traditional tungsten arc welding currently used in practical industry. Compared with the tungsten arc welding joint, microstructure in the fusion zone of laser welded joint was more uniform, which brought out a less fluctuation in the microhardness of fusion zone along the thickness direction. The tensile strength of as-welded laser welding joint was slightly higher than that of as-welded tungsten arc welding joint while the elongation of the former increased by 15.9% over that of the latter. A binocular stereo three-dimensional scanning method was adopted to compare the residual distortion of D406A joints between laser welding and tungsten arc welding. Notably, the distortion of laser welded joint was about 21% of that of the tungsten arc welding joint. Narrow-gap laser filler wire welding is a feasible substitute for conventional tungsten arc welding in the fabrication of welded construction of D406A steel.

    关键词: ultra-high strength steel,welding distortion,filler wire,narrow-gap laser beam welding,microstructure

    更新于2025-11-28 14:24:20

  • Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts

    摘要: Pure and Iron doped TiO2 nanoparticles were synthesized using the sol-gel method. These materials were characterized by X-ray diffractometer (XRD), high-resolution transmission electron microscope (HR-TEM), scanning electron microscope (SEM), Energy dispersive X-ray (EDX), UV-Vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared (FTIR), Raman and fluorescence spectrometer. XRD analysis revealed that all the samples were a single phase with anatase nanocrystallite structures. The crystallite size of titania reduced from 9.64 nm to 7 nm with Fe doping. The HRTEM images of the TiO2 and 3% Fe doped TiO2 have revealed that all the particles have a spherical shape with an average particle size of 10 nm and 8 nm respectively. The characteristic peak at 482 cm-1 of the Ti–O bond stretching vibrations can be evidently observed from FTIR analysis. The Raman blue shift was found in the Fe doped TiO2 samples. Fe-doped TiO2 nanoparticles showed a significant red-shift in band edge as compared with pure TiO2 nanoparticles. The redshift of band gap was detected in Fe doped TiO2 nanoparticles. The photoluminescence (PL) emission intensity of Fe doped TiO2 nanoparticles decreases with an increase in Fe doping concentration. The photocatalytic efficiencies of the Fe-doped TiO2 nanoparticles have shown a strong photocatalytic activity (PCA) response. At constant irradiation time, the Fe-doped titania nanoparticles display more catalytic activity compared to undoped TiO2. The photodegradation efficiencies typically decline with an increase in the concentration of Fe+3 doping for the decolorization of methylene blue (MB) under visible light irradiation.

    关键词: band gap,Raman modes,photocatalytic activity,TiO2 nanoparticles,methylene blue,PL emission

    更新于2025-11-21 11:18:25

  • Band gap engineered zinc oxide nanostructures <i>via</i> a sol–gel synthesis of solvent driven shape-controlled crystal growth

    摘要: A reliable sol–gel approach, which combines the formation of ZnO nanocrystals and a solvent driven, low shape-controlled, crystal-growth process to form well-organized ZnO nanostructures at temperature is presented. The sol of ZnO nanocrystals showed shape-controlled crystal growth with respect to the solvent type, resulting in either nanorods, nanoparticles, or nanoslates. The solvothermal process, along with the solvent polarity facilitate the shape-controlled crystal growth process, augmenting the concept of a selective adhesion of solvents onto crystal facets and controlling the final shape of the nanostructures. The XRD traces and XPS spectra support the concept of selective adhesion of solvents onto crystal facets that leads to yield different ZnO morphologies. The shift in optical absorption maxima from 332 nm in initial precursor solution, to 347 nm for ZnO nanocrystals sol, and finally to 375 nm for ZnO nanorods, evidenced the gradual growth and ripening of nanocrystals to dimensional nanostructures. The engineered optical band gaps of ZnO nanostructures are found to be ranged from 3.10 eV to 3.37 eV with respect to the ZnO nanostructures formed in different solvent systems. The theoretical band gaps computed from the experimental XRD spectral traces lie within the range of the optical band gaps obtained from UV-visible spectra of ZnO nanostructures. The spin-casted thin film of ZnO nanorods prepared in DMF exhibits the electrical conductivity of 1.14 × 10?3 S cm?1, which is nearly one order of magnitude higher than the electrical conductivity of ZnO nanoparticles formed in hydroquinone and ZnO sols. The possibility of engineering the band gap and electrical properties of ZnO at nanoscale utilizing an aqueous-based wet chemical synthesis process presented here is simple, versatile, and environmentally friendly, and thus may applicable for making other types of band-gap engineered metal oxide nanostructures with shape-controlled morphologies and optoelectrical properties.

    关键词: electrical conductivity,ZnO nanostructures,optical band gap,shape-controlled crystal growth,sol–gel synthesis

    更新于2025-11-19 16:56:42

  • Plasmonic Metasurfaces with Tunable Gap and Collective SPR Modes

    摘要: Optical properties of a plasmonic metasurface made of a monolayer of gold nanoparticles in close proximity to an aluminum thin film were studied numerically and experimentally. Extinction spectra of the plasmonic metasurface were studied as functions of the thickness of a dielectric spacer between the monolayer of gold nanoparticles and the aluminum film in the visible wavelength range. The goal was to understand the excitation of a collective surface plasmon resonance (SPR) mode and a gap plasmon mode as well as their dependence on the spacer thickness, nanoparticles spacing and their size. By using finite-difference-time-domain (FDTD) calculations we find that the SPR extinction peak first red-shifts and then splits into two peaks. The first extinction peak is associated with the collective SPR mode of the monolayer and it shifts to shorter wavelengths as the spacer layer decreases. As the spacer layer decreases from 35 nm to 7.5 nm, the second peak gradually appears in the extinction spectra of the metasurface. We assign the second peak to the gap mode. The gap mode first appears at around 620 nm or greater and it shifts to larger wavelength for larger nanoparticle spacing and size. The FDTD simulations are confirmed by an experimental examination of the dispersion curves of a similar multilayer system. The computational results match the experimental results and confirm the excitation of the two modes.

    关键词: gap plasmon mode,surface plasmon resonance,Plasmonic metasurfaces,aluminum thin film,FDTD,gold nanoparticles

    更新于2025-11-19 16:56:42

  • Non-radiation creation of complex centers in wide-gap oxide crystals

    摘要: It is shown that complex aggregate centers of oxygen divacancy type (F2 centers) and interstitial aluminum type near the anion vacancy (Ali+) are formed in anion-deficient crystals of corundum (α-Al2O3-δ) and beryllium oxide (BeO1-δ) under thermo-optical treatment (TOT). These centers are similar to those created in stoichiometric α-Al2O3 and BeO crystals under neutron irradiation. It is important to note that thermal stability of the TOT-created complex centers is higher than that of similar neutron-induced centers. It is also established that the probability of their formation is related to the temperature of the TOT, the wavelength of the stimulating light, and the initial anionic deficiency manifested as F+ and F centers (anion vacancies with one and two electrons, respectively).

    关键词: Formation of complex defects,Wide-gap anion-deficient oxide crystals,Thermoluminescence,Optical absorption,Thermostability of complex defects,Thermo-optical treatment

    更新于2025-11-19 16:56:35

  • Correlation between the morphology and the opto-electronic and electrical properties of organometallic halide perovskite (CH<sub>3</sub>NH<sub>3</sub>MH<sub>3</sub>) thin films

    摘要: Organometallic halide perovskites are emerging as a promising class of materials for optoelectronic applications. Crystal morphology is important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electrical and photovoltaic devices. It is thus important to investigate how the changes in crystal morphology affect the semiconductor behavior. This work presents a study that was carried out to assess the relationship between different deposition methodologies and the opto-electronic and electrical properties of the resultant organometallic halide perovskite thin films. Herein, single step solution deposition method and two step solution deposition methods have been used to deposit perovskite thin films. The structure and morphology of perovskite was controlled by changing concentration, annealing temperatures and dip coating times. From the study, prepared films showed different morphologies as the concentration, annealing temperatures and dip coating times were varied. Optical band gap energies of 2.23 eV, 2.13 eV and 2.09 eV were obtained for samples prepared by single step solution deposition method and 1.57 eV, 1.55 eV and 1.52 eV for two step solution deposition method. The sheet resistance values decreased with an increase in concentration, annealing temperatures and dip coating times. The decrease in optical band gap energy and sheet resistances are excellent properties for high performance photovoltaic devices.

    关键词: Perovskite,sheet resistivity,activation energy,band gap,sheet resistance,spectroscopy

    更新于2025-11-19 16:56:35

  • Planar plasmonic nanocavity for efficient enhancement of photoluminescence of molecular emitters

    摘要: Effects of plasmonic gap mode formation due to coupling between metal nanoparticles and thin metal film separated by thin dielectric luminescent film-spacer (gap) have been studied by means of light extinction and photoluminescence in three-layer planar Au NPs monolayer/shellac-dye film/Au film nanostructure with spacer thickness varied in the range 8–47 nm. The 3-fold enhancement of light extinction and 90 nm red shift of the plasmon mode have been observed in extinction spectra. The 37-fold enhancement of dye photoluminescence and the significant (48 nm) red shift of dye photoluminescence band have been observed for Au NPs monolayer/shellac-dye film/Au film nanostructure in comparison with bare shellac-dye film for the spacer thickness of 8 nm. The decrease of the spacer thickness causes the increase of the enhancement factor of dye photoluminescence indicating the strengthening of the gap mode field. FDTD calculations of the dependence of the intensity of the field of gap mode on the gap thickness have demonstrated good quantitative agreement with experimental data that proves the key role of gap mode in the enhancement of the electromagnetic field in planar metal NPs monolayer/dielectric film/metal film plasmonic nanocavity nanostructures. The variation of the gap thickness provides the possibility to tune controllably the spectral position and enhancement factor of the light emission from the molecular emitters located in the gap that can be used in the novel nanophotonics devices and for highly sensitive detection of the single molecules.

    关键词: Near field coupling,Gap thickness dependence,Molecular emitters,Gap mode,Plasmonic nanocavity,Photoluminescence enhancement

    更新于2025-11-19 16:46:39

  • Plasmonic Nanocavity Metasurface Based on Laser-Structured Silver Surface and Silver Nanoprisms for the Enhancement of Adenosine Nucleotide Photoluminescence

    摘要: A reliable photoluminescence (PL) spectroscopy and imaging of biomolecules at room temperature is a challenging and important problem of biophysics, biochemistry, and molecular genetics. A unique effect of strong plasmonic enhancement of the PL by metal nanostructures is one of the most effective approaches for this purpose. The highest enhancement is provided by metal nanostructures with densely packed sharp tips, periodically arranged metal nanostructures, and plasmonic cavities. All of these features have been realized in the plasmonic cavity metasurface based on the silver (Ag) laser-induced periodic surface structure and Ag triangular nanoprisms studied in the present work. The strong plasmon-enhanced PL of 5′-deoxyadenosine monophosphate deposited on such metasurfaces has been revealed at room temperature. The observed enhancement of more than 1000-fold has been interpreted as a result of synergetic action of the generation of a high concentration of hot spots near the sharp edges of the laser-induced surface structure and nanoprisms together with excitation of the collective gap mode of the cavity due to strong near-field plasmonic coupling. Correspondingly, the plasmonic cavity metasurfaces consisting of metal laser-induced periodic surface structures and nonspherical metal nanoparticles with sharp edges have been shown to be crucial for the highly sensitive detection and imaging of biomolecules at room temperature without consuming any dye labels.

    关键词: hot spots,plasmon gap mode,plasmonic metasurface,near-field coupling,nucleotide photoluminescence enhancement

    更新于2025-11-19 16:46:39

  • Time-dependent DFT and experimental study on visible light photocatalysis by metal oxides of Ti, V and Zn after complexing with a conjugated polymer

    摘要: Density Functional Theory (DFT) and Time Dependent (TD)-DFT studies predict substantial modifications in optical properties of Transition Metal Oxides (TMOs) of Ti, V and Zn by complexing them with conjugated polymer polythiophene (PTh). The TMO nanostructures were synthesized and their complexes with polymers were fabricated using a chemical oxidative polymerization method. Coating of the TMOs with PTh and the nano-dimensional nature of the samples was confirmed by various morphological investigations such as infrared (IR), X-ray di?ractographs (XRD), High Resolution Transmission Electron Microscopy (HR-TEM) and field emission scanning electron microscopy (FE-SEM) techniques. The prepared samples were found to be a visible light driven photocatalyst. The sensitization of the complexes has been explained in terms of relative ordering of frontier orbitals of PTh and the TMO, and PTh qualified as an e?cient photosensitizer for all three metal oxides on the basis of its electronic characteristics. Since the Highest Occupied Molecular Orbital (HOMO) of PTh lies well between the band gap of all three TMOs, the electron transfer from donor (PTh) to acceptor (TMO) is facilitated. The appreciable red shift in the absorption spectrum and decrease in the optical band gap calculated by Tauc’s plot confirmed substantial reduction in the band gap of the formed complex in comparison to their bare counterparts. The isodensity plots established the PTh–TMO complexes as donor acceptor complexes and intermolecular charge transfer quantified the electron transfer from PTh (donor) to the TMOs (acceptor).

    关键词: conjugated polymer,TD-DFT,visible light,metal oxides,DFT,photocatalysis,polythiophene,band gap tuning

    更新于2025-11-14 17:04:02

  • Compositional dependence of properties in calcium substituted sodium borophosphate glasses containing $${\hbox {VO}}^{2+}$$ VO 2 + ions

    摘要: Synthesis of calcium-substituted sodium borophosphate glasses with compositions xCaO ? (30 ? x)Na2O ? 35B2O3 ? 35P2O5 (x = 0, 2, 5, 7 and 10 mol%, abbreviated as CNVx) containing additional 1.0 mol% of V2O5 following a melt-quench method has been carried out. Different analytical techniques viz. wide angle X-ray diffraction (to con?rm non-crystalline nature), ultraviolet–visible spectroscopy (for optical band gap analysis), infrared absorption spectroscopy (for structural analysis) and differential thermal analysis (to evaluate characteristic temperatures) were employed to characterize the synthesized compositions. The optical band gap is calculated for both indirect allowed and indirect forbidden transitions. The values of the band gap decrease with increasing concentration of CaO (from 5 to 10 mol%) at the cost of Na2O. The cut-off wavelength and Urbach’s energy are determined from the optical absorption spectra and were related to the structural changes occurring in these glasses with an increase in CaO content. The results obtained from Fourier-transform infrared studies con?rm that V2O5 and CaO play the role of network modi?er oxides. Also, the signi?cant shifting in IR bands with an increase in CaO content in the glass matrix suggests the formation of a new boron–oxygen ring. From differential scanning calorimetry measurements it is observed that substitution leads to the increase in natural bond orbitals, high degree cross-linking and thus strengthens the glass network. Glass transition temperature (Tg) is found to increase from 483 to 522?C. Electrical and dielectric properties are analysed using dc conductivity and impedance spectroscopy. Using impedance spectroscopy, different dielectric parameters i.e. dielectric loss (ε(cid:4)), electrical modulus (M ?) and ac conductivity (σac) etc. are evaluated as a function of frequency, temperature and composition. The frequency dependence of impedance exhibits the non-Debye relaxation behaviour and the total conductivity obeys Jonscher’s power law.

    关键词: Jonscher’s power law,impedance spectroscopy,Band gap,differential thermal analysis

    更新于2025-11-14 14:48:53