- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A hybrid nanomaterial with NIR-induced heat and associated hydroxyl radical generation for synergistic tumor therapy
摘要: Although photothermal therapy (PTT) and photodynamic therapy (PDT) are widely commended for tumor treatment recently, they still suffer severe challenges due to the non-specificity of photothermal agents (PTAs)/photosensitizers (PSs) and hypoxic tumor microenvironment. Here, an oxygen independent biomimetic nanoplatform based on carbon sphere dotted with cerium oxide and coated by cell membrane (MCSCe) was designed and synthesized with good biocompatibility, homologous targeting ability, and improved photophysical activity. Notably, MCSCe could realize accumulation of hydrogen peroxide (H2O2) in tumor cells and hyperthermia under single laser (808 nm) irradiation, which were simultaneously utilized by itself to produce more toxic hydroxyl radical (·OH). Resultantly, the synergistic therapeutic effect against tumor cells was obtained under near infrared (NIR) laser irradiation.
关键词: cerium oxide,H2O2 self-accumulation,cell membrane,tumor therapy,carbon sphere
更新于2025-11-21 11:01:37
-
A novel fluorescent probe for H2O2 detection based on CdSe@ZnS quantum dots/Ag nanocluster hybrid
摘要: The selective and quantitative detection of H2O2 is important for its employment in physiological, environmental and industrial applications. In this paper, a sensitive and selective strategy for H2O2 detection was established based on the fluorescence quenching of CdSe@ZnS quantum dots (QDs) by H2O2-mediated etching process of Ag nanoclusters (AgNCs). In this strategy, dihydrolipoic acid (DHLA) modified AgNCs were applied as H2O2 response group, the existence of H2O2 could initiate the oxidation of AgNCs and the production of Ag+, which could give rise to the effective fluorescence quenching of CdSe@ZnS QDs. Based on this strategy, the present fluorescent assay could realize the quantificational detection of H2O2 and the limit of detection is calculated to be 0.3 mM under the optimum conditions. Furthermore, CdSe@ZnS/AgNCs hybrid-based probe was applied to detecting H2O2 in milk samples and showed a good recoveries results ranged from 95.8% to 112.0%, meaning the potential applicability of this strategy.
关键词: H2O2 detection,Ag nanoclusters,Fluorescence quenching,CdSe@ZnS quantum dots
更新于2025-11-19 16:46:39
-
FRET-based dual channel fluorescent probe for detecting endogenous/exogenous H2O2/H2S formation through multicolor images
摘要: We have developed a FRET-based fluorescent probe (PHS1) as a combination of two different fluorophores (coumarin and naphthalimide); which can detect both exogenous and endogenous H2S and H2O2 in live cells through multicolor images. The precise overlap between UV-absorption of naphthalimide and the emission band of coumarin in probe PHS1 allows the acquisition of the self-calibrated information of dual analytes through FRET-based imaging. The UV–Vis absorption (λabs 390 nm) and fluorescence emission (λem 460 nm) of probe PHS1 in the presence of H2O2 are increased ∽35- fold and ∽15-fold respectively. It also allows the estimation of the levels of H2S through enhancement of emission intensity at 550 nm. The probe PHS1 exhibits high stability against various analytes, including various pH (4–9.5). The cell viability assay data indicate that the probe is not harmful to the cancer cells. The nontoxic nature of the probe PHS1 encourages application for cancer cell labeling. The probe PHS1 can detect the level of endogenous H2O2, H2S, and H2O2/H2S in cancer cells through blue, green and FRET-based green channel imaging. PHS1 is a unique probe, has potential application for diagnosing cancer by providing information on the level of dual analytes (H2S, H2O2) in cancer cells.
关键词: FRET-based fluorescent probe,Naphthalimide,Endogenous H2O2,Endogenous H2S,Coumarin
更新于2025-11-19 16:46:39
-
N-arylated bisferrocene pyrazole for dual-mode detection of hydrogen peroxide: AIE-active fluorescent “turn on/off” and electrochemical non-enzymatic sensor
摘要: A series of new N?arylated bisferrocene pyrazole (D-π-A-π-D) chromophores have been synthesized by the Chan?Lam cross-coupling (1, 2) and Buchwald–Hartwig amination (3, 4) reactions. The compounds 1-4 were characterized with the aid of analytical and spectroscopic methods. The solvatochromism behaviour of compounds (1, 3) showed positive solvatochromism and later (2, 4) exhibited negative solvatochromism. The compounds 1-4 interestingly showcased high-enhanced fluorescent intensity in their aggregate state while in the solution state they exhibited low fluorescent intensity behaviour. The origin of enhanced emission in the aggregated state is due to a restriction of intramolecular rotation, especially in the ratio of mixture 40:60 (CH3CN/H2O). The aggregation-induced emission(AIE) properties were utilized to detect the H2O2 which show quick response in a linear range of 10-50 μM with a detection limit of 38.8 nM (1) and 15.9 nM (3). Furthermore, the electrochemical reduction of hydrogen peroxide in the same linear range as above showed and a limit of detection (3σ) of 14.4 mM (1) and 11.6 mM (3).
关键词: Dual-mode detection of H2O2,Electrochemical non?enzymatic sensor,AIE-active luminogens
更新于2025-11-14 15:29:11
-
Self-Luminescing Theranostic Nanoreactors with Intraparticle Relayed Energy Transfer for Tumor Microenvironment Activated Imaging and Photodynamic Therapy
摘要: The low tissue penetration depth of external excitation light severely hinders the sensitivity of fluorescence imaging (FL) and the efficacy of photodynamic therapy (PDT) in vivo; thus, rational theranostic platforms that overcome the light penetration depth limit are urgently needed. To overcome this crucial problem, we designed a self-luminescing nanosystem (denoted POCL) with near-infrared (NIR) light emission and singlet oxygen (1O2) generation abilities utilizing an intraparticle relayed resonance energy transfer strategy. Methods: Bis[3,4,6-trichloro-2-(pentyloxycarbonyl) phenyl] oxalate (CPPO) as a chemical energy source with high reactivity toward H2O2, poly[(9,9’-dioctyl-2,7-divinylene-?uorenylene)-alt-2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene] (PFPV) as a highly efficient chemiluminescence converter, and tetraphenylporphyrin (TPP) as a photosensitizer with NIR emission and 1O2 generation abilities were coencapsulated by self-assembly with poly(ethyleneglycol)-co-poly(caprolactone) (PEG-PCL) and folate-PEG-cholesterol to form the POCL nanoreactor, with folate as the targeting group. A series of in vitro and in vivo analyses, including physical and chemical characterizations, tumor targeting ability, tumor microenvironment activated imaging and photodynamic therapy, as well as biosafety, were systematically investigated to characterize the POCL. Results: The POCL displayed excellent NIR luminescence and 1O2 generation abilities in response to H2O2. Therefore, it could serve as a speci?c H2O2 probe to identify tumors through chemiluminescence imaging and as a chemiluminescence-driven PDT agent for inducing tumor cell apoptosis to inhibit tumor growth due to the abnormal overproduction of H2O2 in the tumor microenvironment. Moreover, the folate ligand on the POCL surface can further improve the accumulation at the tumor site via a receptor-mediated mechanism, thus enhancing tumor imaging and the therapeutic effects both in vitro and in vivo but without any observable systemic toxicity. Conclusion: The nanosystem reported here might serve as a targeted, smart, precise, and noninvasive strategy triggered by the tumor microenvironment rather than by an outside light source for cancer NIR imaging and PDT treatment without limitations on penetration depth.
关键词: chemiluminescent imaging,H2O2,self-luminescing theranostic nanoreactors,intraparticle relayed energy transfer,PDT
更新于2025-09-23 15:23:52
-
Cuprous oxide nanocubes decorated reduced graphene oxide nanosheets embedded in chitosan matrix: A versatile electrode material for stable supercapacitor and sensing applications
摘要: Herein, we report cuprous oxide nanocubes decorated reduced graphene oxide (CNC-rGO) immersed in chitosan matrix as a versatile and enhanced electrochemically active electrode material for both supercapacitor and hydrogen peroxide (H2O2) sensor applications. The CNC-rGO was synthesized by one-pot scalable chemical precipitation method. The morphology and crystal structure of as-synthesized hybrid material was characterized by field emission scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The CNC-rGO hybrid material immersed in the chitosan matrix was used as an enhanced electrochemically active electrode material for supercapacitor and hydrogen peroxide (H2O2) sensor. The fabricated CNC-rGO hybrid in chitosan matrix as an electrode showed remarkable charge storage capacity of 772.3 F g-1 (12.87 mA h g-1) at a current density of 0.2 A g-1 with high cyclic stability over 2000 charge-discharge cycles. Similarly, H2O2 sensing performance of the same electrode exhibits very high sensitivity of 0.33 A M-1 cm-2 within a linear range of detection of 20-160 μM. Thus, the synthesized CNC-rGO hybrid material composed of numerous cuprous nanocubes on rGO nanosheets with large active sites showed enhanced electrochemical activity beneficial towards the supercapacitor and H2O2 sensor applications.
关键词: copper oxide nanocubes,chitosan,supercapacitor,H2O2 sensor,reduced graphene oxide
更新于2025-09-23 15:23:52
-
A New Catalyst Ti Doped CdO Thin Film for Non-Enzymatic Hydrogen Peroxide Sensor Application
摘要: A new material, Ti doped CdO (Ti: CdO) semiconductor, is firstly reported by this work for electrochemical non-enzymatic hydrogen peroxide (H2O2) sensor applications which was deposited by a simple, versatile and cost-effective chemical spray pyrolysis method on indium doped tin oxide (ITO) substrate. In the basic studies, first, the withstanding of cubic crystal phase along with worthy crystalline nature is discerned on CdO film after Ti doping, here only the preferentially orientated (200) diffraction plane shifted to (111). Subsequently, the irregular spherically shaped CdO nanoparticles (NPs) morphology changed as nearly uniform size with Ti doping is noticed with respect to thermal pyrolytic decomposition process. The existence of Ti atoms in Ti: CdO film is authentically identified and confirmed using EDX and XPS studies respectively. The absorption and emission properties of CdO and Ti: CdO films are studied and confirmed their narrow band gap nature. Importantly, the Ti: CdO film shows pronounced electrocatalytic activity for the reduction of hydrogen peroxide (H2O2) as compared to pure CdO. Hence, the non-enzymatic electrochemical sensing of Ti: CdO electrode shows a lower detection limit 0.4 μM with the linear range of 10-190 μM which displayed a fast amperometric response for 5 s with sensitivity of 0.27 μA μM-1 cm-2 toward H2O2 detection. This result will boost exploring a new opportunity for the deposition of other metal oxides and semiconductors by using a simple chemical spray pyrolysis method for detection of non-enzymatic H2O2 sensor applications.
关键词: H2O2 sensor,and selectivity,Chemical spray pyrolysis,Ti: CdO thin film
更新于2025-09-23 15:23:52
-
Enhanced electrocatalytic production of H2O2 at Co-based air-diffusion cathodes for the photoelectro-Fenton treatment of bronopol
摘要: (Co, S, P)-decorated multiwalled carbon nanotubes (MWCNTs) have been synthesized following a hydrothermal route as electrocatalysts to manufacture large surface area air-diffusion cathodes with carbon cloth as substrate. The enhanced electrocatalytic H2O2 production as compared with Co-free MWCNTs cathodes was demonstrated in a 2.5-L pre-pilot plant with either a RuO2-based or boron-doped diamond (BDD) anode, accumulating between 2- and 3-fold greater H2O2 contents with the catalyzed cathode. The good stability of this new material was ensured from the low Co leaching, with less than 9% Co released to solutions upon repeated usage. Aqueous solutions of the brominated organic preservative bronopol with 0.050 M Na2SO4 at pH 3.0 were comparatively treated by electro-oxidation (EO-H2O2), electro-Fenton (EF), UVA-assisted photoelectro-Fenton (PEF) and solar PEF (SPEF) at constant current density. SPEF with BDD anode and the catalyzed cathode showed the best performance, with total bronopol removal at 210 min and 94% mineralization after 360 min at 40 mA cm-2, thanks to the action of ?OH, BDD(?OH) and sunlight. Formic acid was identified as main reaction by-product, whereas Br and N atoms were mainly converted to Br-, BrO3- and NO3-. Some unidentified organic by-product containing Br and N was formed as well.
关键词: Photoelectro-Fenton process,Bronopol,H2O2 electrogeneration,Wastewater treatment,Pre-pilot plant
更新于2025-09-23 15:23:52
-
Comparison of UV-AOPs (UV/H2O2, UV/PDS and UV/Chlorine) for TOrC removal from municipal wastewater effluent and optical surrogate model evaluation
摘要: UV-based advanced oxidation processes (AOPs) have been widely explored to remove organic contaminants from water streams. In this lab-scale study, the removal of 17 trace organic chemicals (TOrCs) by UV/H2O2, UV/PDS and UV/Chlorine was investigated at equimolar radical promoter concentrations in municipal wastewater. Direct comparison of the UV-AOPs was conducted with eight TOrCs being resistant to direct oxidation by H2O2, PDS and chlorine and revealed a general oxidation performance following the order of UV/Chlorine > UV/H2O2 ≈ UV/PDS while UV/PDS and UV/Chlorine exhibited higher compound selectivity than UV/H2O2. However, although oxidation performance of UV/Chlorine is outstanding in comparison of the three UV-AOPs, it has to be noted that oxidation byproduct (OBP) formation potential might be substantially higher during both UV/PDS and UV/Chlorine compared to UV/H2O2 which was not investigated in this study. Evaluating potential optical surrogates to predict trace organic chemical (TOrCs) removal in UV-AOPs, nine parameters were selected representing chromophore and fluorophore features of DOM including components derived by parallel factor analysis (PARAFAC) of excitation-emission matrices. UV absorbance (UVA), total fluorescence (TF) and the selected fluorescence peak P_IV revealed highest linear correlation coefficients and were therefore identified as surrogates representing underlying mechanistic reactions of each UV-AOP. As none of the surrogates directly reacted with UV irradiation, slopes of surrogate-indicator correlations for photo-susceptible TOrCs decreased towards higher oxidant dosages. Correlations for these compounds should therefore only be determined for a limited range of oxidant dosage.
关键词: UV/HOCl,surrogate model.,UV/H2O2,wastewater,UV/PDS,trace organic chemicals
更新于2025-09-23 15:23:52
-
Enhancing visible light photocatalytic performance with N-doped TiO <sub/>2</sub> nanotube arrays assisted by H <sub/>2</sub> O <sub/>2</sub>
摘要: N-doped TiO2 nanotube arrays were prepared by an electrochemical anodization method and subsequent ammonia annealing. Microstructures, morphology, optical properties and photocatalytic properties of the N-doped TiO2 nanotube arrays were measured and analyzed. In the degradation of Acid Orange II(AO-II), the photocatalytic degradation efficiency of the N-doped TiO2 nanotube arrays assisted by H2O2 are 12 times, 2 times and 5 times higher than TiO2 nanotube arrays, TiO2 nanotube arrays assisted by H2O2 and H2O2, respectively. Experimental results show that the N-doped TiO2 nanotube arrays is a promising photocatalytic material for organic pollutant degradation under visible light, especially under the assistance of H2O2.
关键词: photocatalytic performance.,N-doped TiO2,H2O2,Electrochemical anodization
更新于2025-09-23 15:23:52