修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2017
研究主题
  • spectral reconstruction
  • interference
  • polarization
  • transform
  • imaging spectrometer
应用领域
  • Optoelectronic Information Science and Engineering
机构单位
  • BITTT
  • Zhejiang University
  • Guilin University of Aerospace Technology
1935 条数据
?? 中文(中国)
  • Long-distance tracing of the lymphatic system with a CT/fluorescence dual-modality nanoprobe for surveying tumor lymphatic metastasis

    摘要: Noninvasive visualization of deep tissue lymphatic metastasis is crucial for diagnosing malignant tumors and predicting prognosis. However, the limited diffusivity and specificity of imaging contrast agents that are transported in lymph vessels (LVs), even for those agents delivered by nanocarriers, make long-distance tracing of the lymphatic system in vivo challenging. Here, we develop a CT/fluorescence dual-modality phospholipid nanoprobe (PL(I/D)NP) with a negative charge and sub-60 nm size. By using micro-CT, we noninvasively traced the LVs from the subcutaneous injection site in feet to the thoracic ducts with an entire length of ~68 mm and measured the volume of the lymph nodes (LNs) and their separation distance along the LVs. For diagnostic imaging of tumor lymphatic metastasis, all LNs with metastasis were identified in vivo. Thus, with their long-distance diffusivity, high lymphatic capillary specificity and quantifiability, the PL(I/D)NPs combined with noninvasive imaging accurately depicted the changes in the lymphatic system under pathologic conditions, especially cancer metastasis, which indicates their high potential for clinical applicability.

    关键词: lymphatic system,nanoparticle,fluorescent imaging,micro-CT,lymphatic metastasis

    更新于2025-11-21 11:08:12

  • A red fluorescent BODIPY probe for iridium (III) ion and its application in living cells

    摘要: A new red fluorescent probe 1 based on BODIPY skeleton has been successfully synthesized through introduction of 2-(thiophen-2-yl) quinoline moiety at meso- and 3-position, which exhibits excellent optical performance, including high fluorescence quantum yield, large pseudo Stokes’ shift as well as high selectivity and sensitivity towards iridium (III) ion in aqueous solution and in living cells.

    关键词: iridium (III) ion probe,fluorescence imaging,BODIPY probe

    更新于2025-11-21 11:08:12

  • A sequential and reversibility fluorescent pentapeptide probe for Cu(II) ions and hydrogen sulfide detections and its application in two different living cells imaging

    摘要: In this study, we report a sequential and reversibility fluorescent probe (DP5) based on pentapeptide conjugated with dansyl groups using the solid phase peptide synthesis (SPPS) technology. DP5 showed immediate “turn off” response toward Cu2+ ions at an excitation wavelength of 330 nm with detection limits of 23.5 nM. The 2:1 binding ratio between DP5 and Cu2+ were confirmed using Job's plot method and fluorescence titration study, and DP5-Cu complex was observed with an association constant of 6.76 × 108 M?2. As designed, DP5-Cu complex as a promising analytical probe exhibited highly selective for H2S detection in aqueous solutions. The detection limit for H2S was obtained to be 17.2 nM, and lower than EPA and WHO guidelines. In addition, the reversibility and cyclicity were imparted to the DP5 during the detection of Cu2+ and H2S, and cycle effect is very good. Furthermore, DP5 displayed better biocompatibility and low biotoxicity, and sequential fluorescence “on-off-on” responses of DP5 to Cu2+ and H2S were successfully applied in two different living cells.

    关键词: Cu2+ ions,Pentapeptide,Fluorescent probe,Cell imaging,Hydrogen sulfide,Aqueous solutions

    更新于2025-11-21 11:08:12

  • Preclinical Study of Biofunctional Polymer-Coated Upconversion Nanoparticles

    摘要: Upconversion nanoparticles (UCNPs) are new-generation photoluminescent nanomaterials gaining considerable recognition in the life sciences due to their unique optical properties that allow high-contrast imaging in cells and tissues. UCNP applications in optical diagnosis, bioassays, therapeutics, photodynamic therapy, drug delivery, and light-controlled release of drugs are promising, demanding a comprehensive systematic study of their pharmacological properties. We report on production of biofunctional UCNP-based nanocomplexes suitable for optical microscopy and imaging of HER2-positive cells and tumors, as well as on the comprehensive evaluation of their pharmacokinetics, pharmacodynamics, and toxicological properties using cells and laboratory animals. The nanocomplexes represent a UCNP core/shell structure of the NaYF4:Yb,Er,Tm/NaYF4 composition coated with an amphiphilic alternating copolymer of maleic anhydride with 1-octadecene (PMAO) and conjugated to the Designed Ankyrin Repeat Protein (DARPin9-29) with high affinity to the HER2 receptor. We demonstrated the specific binding of UCNP-PMAO-DARPin to HER2-positive cancer cells in cultures and xenograft animal models allowing the tumor visualization for at least 24 h. An exhaustive study of the general and specific toxicity of UCNP-PMAO-DARPin including the evaluation of their allergenic, immunotoxic, and reprotoxic properties was carried out. The obtained experimental body of evidence leads to a conclusion that UCNP-PMAO and UCNP-PMAO-DARPin are functional, non-cytotoxic, biocompatible, and safe for imaging applications in cells, small animals, and prospective clinical applications of image-guided surgery.

    关键词: nanotoxicology,pharmacodynamics,pharmacokinetics,animal imaging,upconversion nanoparticles,photoluminescent nanomaterials

    更新于2025-11-21 11:08:12

  • Dual-action Platinum(II) Schiff Base Complexes: Photocytotoxicity and Cellular Imaging

    摘要: Nine photo-stable Pt(II) Schiff base complexes [Pt(O^N^N^O)] (Pt1-Pt9) containing tetradentate salicylaldimine chelating ligands have been synthesized and characterized as potential photosensitisers for photodynamic therapy (PDT). The effects of electron-withdrawing versus electron-donating substituents on their electronic spectral properties are investigated. Pt1-Pt9 show broad absorption bands between 400-600 nm, which makes them useful for green-light photodynamic therapy. The complexes showed intense phosphorescence with emission maxima at ca. 625 nm. This emission was used to track their cellular localization in cancer cells. Confocal cellular imaging showed that the complexes localized mostly in the cytoplasm. In the dark, the complexes were non-toxic to A549 human lung cancer cells, but exhibited high photo-toxicity upon low-dose green light (520 nm, 7.02 J/cm2) irradiation via photo-induced singlet oxygen generation. Thus, these photoactive Pt(II) complexes have the potential to overcome the problem of drug resistance and side effects of current clinical Pt(II) drugs, and to act as both theranostic as well as therapeutic agents.

    关键词: Schiff Base,Platinum(II),Photocytotoxicity,Cellular Imaging,Singlet oxygen

    更新于2025-11-21 11:08:12

  • AIE active fluorescent organic nanoaggregates for selective detection of phenolic-nitroaromatic explosives and cell imaging

    摘要: Development of organic nanoparticles with high fluorescence, good biocompatibility along with strong resistance to photobleaching through simple synthetic routes is important for diverse applications such as sensing and bioimaging. Herein, we present the development of a pyrene excimer nanoaggregate which shows aggregation induced emission (AIE) effect in a solvent mixture of THF and water. The pyrene based fluorescent probe, dimethyl-5-(pyren-1-ylmethyleneamino)isophthalate (5-DP) was synthesized through a simple single step condensation reaction from inexpensive reagents. The photophysical studies of nanoaggregated system further corroborates the AIE active behavior of 5-DP probe at different water fractions (?w = 0% to 90%), where the hydrogen bonding interaction between imine and water molecules led to suppression of photoinduced electron transfer (PET) inducing significant enhancement in fluorescence. The highly photostable nanoaggregates were explored as a selective fluorescence “turn off” sensor for phenolic nitroaromatics and the chemo-selectivity was highly pronounced for 2,4,6-trinitrophenol (picric acid), that showed efficient quenching in aqueous as well as solid phase, with a detection limit of 10 nM in aqueous medium. The quenching efficiency of the nanoaggregates can be ascribed to a combination of factors including efficient fluorescence resonance energy transfer, inner filter effect and coulombic interaction between picric acid and the aggregated probe molecules. Further, random aggregation of the pyrene derivative could be controlled for the formation of fluorescent spherical nanoparticles using Pluoronics P-123 block copolymers as encapsulating agents. The resulting composite could be used as a neoteric cell imaging probe with significantly less cytotoxicity, thus showing their potential biological applications.

    关键词: aggregation induced emission,electron transfer,explosive detection,cell imaging,Fluorescent organic nanoaggregates

    更新于2025-11-21 11:03:13

  • Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics

    摘要: Black phosphorus (BP) is a promising theranostic agent owing to its excellent photothermal property, biocompatibility and biodegradability. However, the rapid degradation of BP with oxygen and moisture causes the innate instability that is the Achilles’ heel of BP, hindering its further applications in cancer theranostics. Herein, a facile surface passivation strategy was developed to prepare polydopamine (PDA) coated BP quantum dots (QDs) (denoted as BP@PDA) through self-polymerization method. PDA with enriched phenol groups plays as a scavenger of reactive oxygen, which can efficiently prevent the oxidation of BP quantum dots and make them much stable in water (~90% for BP@PDA vs. only 10% for pure BP QDs after 10 days storage). Furthermore, PDA with strong near-infrared (NIR) absorption could greatly improve the photothermal conversion efficiency (PCE) of BP QDs from 22.6% to 64.2% (~2.84-fold higher). Considering the excellent biodegradability and good biocompability of both BP QDs and PDA, the as-prepared BP@PDA hold great potential for cancer theranostics.

    关键词: Photoacoustic imaging,Black phosphorus,Photothermal therapy,Cancer theranostics,Polydopamine

    更新于2025-11-19 16:56:42

  • Dopamine-Mediated Assembly of Citrate-Capped Plasmonic Nanoparticles into Stable Core-Shell Nanoworms for Intracellular Applications

    摘要: Plasmonic nanochains, derived from the one-dimensional assembly of individual plasmonic nanoparticles (NPs), remain infrequently explored in biological investigations due to their limited colloidal stability, ineffective cellular uptake, and susceptibility to intracellular disassembly. We report the synthesis of polydopamine (PDA)-coated plasmonic “nanoworms” (NWs) by sonicating citrate-capped gold (Cit-Au) NPs in a concentrated dopamine (DA) solution under alkaline conditions. DA mediates the assembly of Cit-Au NPs into Au NWs within 1 min, and subsequent self-polymerization of DA for 60 min enables the growth of an outer conformal PDA shell that imparts stability to the inner Au NW structure in solution, yielding “core–shell” Au@PDA NWs with predominantly 4–5 Au cores per worm. Our method supports the preparation of monometallic Au@PDA NWs with different core sizes and bimetallic PDA-coated NWs with Au and silver cores. The protonated primary amine and catechol groups of DA, with their ability to interact with Cit anions via hydrogen bonding and electrostatic attraction, are critical to assembly. When compared to unassembled PDA-coated Au NPs, our Au@PDA NWs scatter visible light and absorb near-infrared light more intensely, and enter HeLa cancer cells more abundantly. Au@PDA NWs cross the cell membrane as intact entities primarily via macropinocytosis, mostly retain their inner NW structure and outer PDA shell inside the cell for 24 h, and do not induce noticeable cytotoxicity. We showcase three intracellular applications of Au@PDA NWs, including label-free dark-field scattering cell imaging, delivery of water-insoluble cargos without pronounced localization in acidic compartments, and photothermal killing of cancer cells.

    关键词: 1D assembly,citrate-capped nanoparticles,polydopamine coating,photothermal killing,intracellular delivery,plasmonic nanoworms,dark-field scattering imaging

    更新于2025-11-19 16:56:42

  • Diffusion Behavior of Differently Charged Molecules in Self-Assembled Organic Nanotubes Studied Using Imaging Fluorescence Correlation Spectroscopy

    摘要: The diffusion behavior of fluorescent molecules within bolaamphiphile-based organic nanotubes (ONTs) was systematically investigated using imaging fluorescence correlation spectroscopy (imaging FCS). Anionic sulforhodamine B (SRB), zwitterionic/cationic rhodamine B (RB) or cationic rhodamine 123 (R123) was loaded into ONTs having cylindrical hollow structures (ca. 10 nm in inner diameter) with amine and glucose groups on the inner and outer surfaces, respectively. Wide-field fluorescence video microscopy was used to acquire imaging FCS data for dye-doped ONTs in aqueous solutions of different ionic strengths (1 – 500 mM) at different pH (3.4 – 8.4). The diffusion behavior of these dyes was discussed on the basis of their apparent diffusion coefficients (D) that were determined by autocorrelating the time transient of fluorescence intensity at each pixel on an ONT. Molecular diffusion in the ONTs was significantly slowed by molecule-nanotube interactions, as shown by the very small D (10-1 – 10-2 μm2/s). The pH-dependence of D revealed that dye diffusion was basically controlled by electrostatic interactions associated with the protonation of the amine groups on the ONT inner surface. The pH-dependent change in D was observed over a wide pH range, possibly due to electrostatically induced variations in the pKa of the densely packed ammonium ions on the ONT inner surface. On the other hand, the influence of ionic strength on D was relatively unclear, suggesting the involvement of non-coulombic interactions with the ONTs in molecular diffusion. Importantly, individual ONTs of different lengths (1 – 5 μm) afforded similar diffusion coefficients for each type of dye at each solution condition, implying that the properties of ONTs were uniform in terms of solute loading and release. These results highlight the characteristics of molecular diffusion behavior within the ONTs, and will help in the design of organic nanotubes better suited for use as drug vehicles and contaminant adsorbents.

    关键词: Electrostatic Interactions,Diffusion Behavior,Ionic Strength,pH-dependence,Imaging Fluorescence Correlation Spectroscopy,Organic Nanotubes

    更新于2025-11-19 16:56:42

  • A red-emitting fluorescent probe with large Stokes shift for real-time tracking of cysteine over glutathione and homocysteine in living cells

    摘要: Fluorescent probes with high quality for highly selective detection of cysteine (Cys) are still urgently in demand because of the indispensable roles Cys plays in the biological systems. Herein, a red-emitting fluorescent probe CP was developed for the highly selective detection of Cys over glutathione (GSH) and homocysteine (Hcy) by incorporating the recognition unit into the 2-(2-(4-hydroxystyryl)-6-methyl-4H-pyran-4-ylidene) malononitrile (P-OH) fluorophore which is characterized by red emission, noteworthy Stokes shift, and appreciable photostability. Basically, CP demonstrated appreciable sensing performance toward Cys including short response time of 4 min, high sensitivity with approximately 147-fold emission enhancement, low detection limit of 41.696 nM, and good selectivity both in the solution and living cells, indicating its promising potential of visualizing Cys in biological systems.

    关键词: Large Stokes shift,Fluorescence imaging,Cysteine detection,Fluorescent probe

    更新于2025-11-19 16:56:35