- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A Comparative Study of Deformation Behaviors Between Laser-Welded Joints and Base Metal of Ti-22Al-24.5Nb-0.5Mo Alloy
摘要: The tensile deformation behaviors of laser-welded Ti-22Al-24.5Nb-0.5Mo alloy joints have been investigated at room temperature and 650 °C using in situ tensile analysis methods. The a2 phase had a significant influence on deformation behaviors of base metal at room temperature and 650 °C. The microcracks mainly nucleated in B2/a2 phase boundaries or within a2 phase and then propagated along B2/a2 phase boundaries subsequently. Compared with the plastic fracture of base metal, the fracture modes of the fully B2-phase fusion zone at room temperature and 650 °C were quasi-cleavage and intergranular fracture, respectively. While dislocation slips became foremost deformation mode in the fusion zone at room temperature, there were a great amount of slip bands on the surface of grains caused by the slip systems. The microcracks of fusion zone at 650 °C nucleated and propagated along the grain boundaries of B2 phase. Owing to the lack of grain deformation, the cross-slip bands were in small quantities on the surface of B2 phase grains.
关键词: in situ analysis,laser welding,deformation behaviors,Ti2AlNb alloy
更新于2025-11-28 14:24:20
-
A multipurpose X-ray fluorescence scanner developed for in situ analysis
摘要: Over the time, instrument transportability has become more and more important, especially in Cultural Heritage, as often artworks cannot be moved from their site, either because of the size or due to problems with permission issues, or simply because moving them to a laboratory is physically impossible, as e.g. in the case of mural paintings. For this reason, the INFN-CHNet, the network for Cultural Heritage studies of the Italian National Institute of Nuclear Physics (INFN), has developed an XRF scanner for in situ analyses. The instrument is the result of a wide collaboration, where different units of the network have been developing the diverse parts, then merged in a single system. The XRF scanner has been designed to be a four-season and green instrument. The control/acquisition/analysis software has been fully developed by our group, using only open-source software. Other strong points of the system are easiness of use, high portability, good performances and ultra-low radiation dispersion, which allows us to use even when the public can be present. It can run both with mains or on batteries, in the latter case with a maximum runtime longer than 10 h. It has a very low cost, when compared to commercial systems with equivalent performances, and easily replaceable components, which makes it accessible for a much wider portion of the interested community. The system has been thought and designed as an open system, suitable for further development/improvements, that can result interesting for non-conventional XRF analysis. The CHNet XRF scanner has proved to be really very well suited for applications in the Cultural Heritage field, as testified by the many recent applications. This paper describes the present version of our instrument and reports on the tests performed to characterise its main features.
关键词: Transportable instrument,XRF imaging,Acquisition,In situ analysis,Cultural heritage,XRF scanner
更新于2025-09-23 15:22:29
-
Evolution of the Ligand Shell around Small ZnO Nanoparticles during the Exchange of Acetate by Catechol: A Small Angle Scattering Study
摘要: The core-shell structure of colloids surrounded by ligands is of great importance for their later application as it can significantly alter the chemical and physical properties of the nanoparticles (NPs). A combination of small angle X-ray and neutron scattering (SAXS/SANS) the native solution with additional ex situ measurements (titration-UV) was applied to study the NP/ligand interface of ZnO NPs after functionalization with catechol derivatives. Based on SAXS data, it was found that within the multimodal particle size distribution the fraction of agglomerates is shifted to smaller sizes and nearly disappeared upon the binding of ethyl 3,4-dihydroxybenzoate (CAT) molecules. This is ascribed to improved stabilization at the primary particle level by CAT molecules. By combining the neutron scattering contrast with the input of bound CAT molecules from a previously developed titration-UV method, the heterogeneous composition of the ligand shell became accessible for the first time.
关键词: small angle scattering,quantum dots,in situ analysis,ligand exchange,core-shell
更新于2025-09-10 09:29:36