修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • Effect of Laser Beam Conditioning on Fabrication of Micro-Channels in Al <sub/>2</sub> O <sub/>3</sub> Bio-ceramics Using Nd:YAG Laser

    摘要: In the present study, laser micro-milling tests were carried out to fabricate micro-channels on Alumina bio-ceramics (Al2O3), using a Q-Switched 30W Nd:YAG pulsed laser. A systematic approach based on a full factorial Design of Experiment (DoE) has been successfully applied with the aim to detect which and how the key input laser process parameters affect the channel dimensional accuracy. The examined process parameters were the laser beam scanning speed, the pulse frequency and the pulse intensity. Optical microscope was used to analyze the channel geometries responses (i.e. channel's top width, bottom width, depth, and taper wall angle). Moreover, mathematical models for predicting the micro-channel geometries are successfully proposed for controlled micro-milling of micro-channels in Al2O3. Results reveal that, the change of scanning speed and laser intensity significantly affected the ablated channel’s geometries. Further it is observed that the channel depth and width increase linearly with increasing of laser intensity and decreasing of scanning speed and not much affected by changing of pulse frequency. Finally, the experimental results bear a good agreement with the proposed prediction models.

    关键词: micro-channels,Nd:YAG laser,Al2O3 bio-ceramics,Design of Experiment,Laser micro-milling

    更新于2025-09-23 15:21:01

  • Investigation on laser-induced oxidation assisted micro-milling of Inconel 718

    摘要: Poor surface quality and rapid tool wear are the main problems in micro-cutting of Inconel 718. In this study, a novel hybrid machining method named laser-induced oxidation assisted micro-milling is proposed to solve the aforementioned problems. A loose oxide layer and a relatively flat sublayer are formed on the material after laser irradiation. Under optimized laser parameters with a scanning speed of 1 mm/s and an average laser power of 4.5 W, the thicknesses of the oxide layer and the sublayer are 24 and 18 mm, respectively. The influence of cutting parameters on milling force, surface roughness, surface quality, and top burr size is studied in detail. Cutting force and thrust force in the proposed hybrid machining process are lower than those in the conventional micro-milling. Results show that for the investigated range of parameters, the optimal feed per tooth and depth of cut in the hybrid process are 3 mm/z and 3 mm, respectively. When using the optimal parameters, the surface roughness of the machined slot bottom is 108.5 nm. The top burr size on the up-milling side and the down-milling side is 26.8 and 36.2 mm, respectively. In addition, the tool wear mechanism is coating delamination in hybrid process, whereas chipping, coating delamination, tool nose breakage, and adhesion are the main tool wear mechanism in the conventional micro-milling. For the same amount of material removal, the proposed hybrid process can decrease the tool wear and enhance the service life of the micro-end mill as compared to conventional micro-milling.

    关键词: micro-milling,Inconel 718,surface quality,tool wear,laser-induced oxidation

    更新于2025-09-19 17:13:59

  • Study on laser-induced oxidation modification coupled with micro milling of WC-Co cemented carbide

    摘要: Cemented carbide is known as “industrial tooth” and has wide applications in terms of military, aerospace and other fields. In this study, a compound processing approach named laser-induced oxidation modification coupled with micro milling (LCMM) is proposed to solve its poor micro machining performance. The oxidation mechanism of WC-Co cemented carbide is revealed. Surface morphology and cross-section of WC-Co cemented carbide are investigated after laser irradiation under various average laser power and two reaction environment. Research results present that at the average power of 5 W, scanning speed of 0.5 mm/s and oxygen-rich oxygen condition, the laser-induced oxidation process is optimal. The thickness of oxide layer and sub-layer is 9.1 μm and 2.7 μm, and the material surface generates porous and loose oxide layer. In addition, comparative analyses are performed and discussed in detail considering milling force, tool wear and surface quality of machined micro slot. In comparison with conventional micro milling (CONM), cutting force of Fx and thrust force of Fy generated in removing the oxide layer in LCMM are reduced by 56% and 58% to maximum extent, respectively. The machined surface quality in LCMM is better than that in CONM with a slower rate of increase in surface roughness (Sa). At ap = 2 μm and fz = 1.5 μm/z, surface quality of machined micro slot in LCMM is superior to that at other milling parameters, and the surface roughness reach 57 nm. Tool wear rate in LCMM is greatly improved and tool wear mechanism mainly includes slight adhesion wear and abrasion wear. While, in CONM the wear mechanisms are severe abrasion wear, chipping and adhesion wear. The tool service life in LCMM can be promoted more than double.

    关键词: Micro milling,Surface quality,Cemented carbide,Laser-induced oxidation,Tool wear

    更新于2025-09-16 10:30:52

  • Laser-assisted micro-milling of austenitic stainless steel X5CrNi18-10

    摘要: This paper presents a novel Laser-Assisted Micro-Milling (LAMM) process of austenitic stainless steel X5CrNi18-10. The LAMM process is compared with the conventional micro-milling process. Ultra-short pulsed laser radiation is utilized for the structuring of the workpiece surface prior to the micro-milling process. Different laser structures are produced on the workpiece surface at a constant laser scanning speed with various laser powers and laser line spans. The high performance of the developed process is shown by experimental investigations. The effect of laser structuring on the micro-milling forces and temperature indicated the superior performance of the new LAMM process. Cutting forces and temperature could be reduced by up to 70% and 50%, respectively. The results of conventional micro-milling showed that increasing the cutting speed, at a constant undeformed chip thickness, reduced the micro-milling forces. Increasing the cutting speed from 50 to 250 m/min halved both the trust and normal forces, while it slightly improved the surface roughness. On the other hand, increasing the feed per tooth degraded the surface roughness and increased the cutting forces. Furthermore, in conventional milling the workpiece was subjected to high plastic deformation during the cutting process, while side flow, smeared material, metal debris, and cavities were observed on the workpiece surface.

    关键词: Laser-assisted micro-milling,Austenitic stainless steel,Ultra-short pulsed laser,Laser structuring,Micro-milling

    更新于2025-09-12 10:27:22

  • Fabrication of a ball end nose micro milling tool by tangential laser ablation

    摘要: The general trend towards miniaturization of components is leading to an increasing demand for micro cutting tools. Such tools are found in a variety of applications like optics manufacturing, mold machining or medical technology. Indeed, micromachining exhibits a high efficiency, accuracy and low cost in comparison to other micro processing technologies. Micro cutting tools are mostly produced by grinding, a mechanical process, which might damage the tool due to induced forces, vibrations and heat. These detrimental effects cause the high scrap rate in the manufacturing of micro cutting tools and limited geometrical flexibility. A new approach for the manufacturing of micro cutting tools is given by the ultrashort-pulsed laser technology: it enables material removal, which is independent of the hardness of the workpiece material and with only a negligible heat-affected zone. In most cases, laser ablation is disadvantaged in contrast to grinding because of its relatively low material-removal rate. When it comes to the manufacturing of micro cutting tools the small amount of material to be removed makes the ultra-short pulsed laser an interesting alternative to grinding. Furthermore, the laser ablation is a force and wear-free process, which ensures high precision. In this paper, a commercially available micro ball end mill geometry is measured by micro X-ray tomography and 3D microscopy. The movement of the mechanical axes and the path of the laser beam for manufacturing the desired tool are determined based on these measurements. The milling tools with a diameter of 100 μm are produced from cemented carbide blanks, on a 8-axis laser machining center. After machining, the tools are analyzed by SEM and using FIB: By creating a cross section perpendicular to the cutting edge the heat-affected zone is examined. Finally, the cutting tool is successfully applied for the manufacturing of micro electrodes in copper for an EDM process while recording the cutting forces.

    关键词: ultrashort pulse laser ablation,tangential laser ablation,ball end nose micro milling tool

    更新于2025-09-12 10:27:22

  • [Micro/Nano Technologies] Micro and Nano Fabrication Technology Volume 1 || Micro Milling for Functional Surface

    摘要: Micro manufacturing has recently increased in the several ?elds that include optics, electronics, medicine, biotechnology, and communications. Then, drastic progresses have been seen in the micro milling with the technologies in micro/nano-scale measurement, control, and tooling. This chapter describes the micro milling for manufacturing of the functional surfaces, which control material behavior with the surface topography. In the introduction, the current technical status in the functional surfaces is reviewed with the micro fabrication processes, and some issues in the micro milling are described to achieve high qualities of the micro elements and structures on the surfaces. Then, the typical micro milling process is discussed in terms of the operations and the removal process. Regarding material behavior, the effect of crystal grain size and orientation on the removal process becomes relatively large. When the grain size reduces, the dynamic components in the cutting force, burr formation, and affected layer can be controlled in micro cutting. Micro milling is applied to manufacture the functional surfaces with the micro dimples at high machining rates. The micro dimples are machined in milling with the inclined spindle at 45(cid:1). The milling with the cutter axis inclination is also applied to machine the micro dimples on the cylinder surfaces. A mechanistic model is applied to control the dimple shape for the cutting parameters, the feed direction, and the tool geometry. The surfaces with the micro dimples are applied to control the surface functions such as optical re?ection and wettability.

    关键词: Surface function,Micro milling,Micro dimple,Wettability,Mechanistic model,Fine grained steel,Optical control

    更新于2025-09-04 15:30:14