修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

132 条数据
?? 中文(中国)
  • High stable polarization-insensitive Er-doped Q-switched fiber laser with iron oxide nanoparticles as saturable absorber

    摘要: All fiber Q-switched laser with its advantages of high energy, compact structure and high stability boosted the growing demand in many applications. We synthesized the regular iron oxide nanoparticles (IONP) in size of 12–15 nm via the chemical co-precipitation method. Using the IONP-PVA film as SA, high stable polarization-insensitive Er-doped Q-switched fiber laser was demonstrated. The prepared IONP SA exhibits saturation intensity of 13.44 MW/cm2. The shortest pulse duration was achieved to be 896 ns and the single pulse energy was up to 100 nJ with the maximum pump power of 500 mW. In particular, the polarization controller is unnecessary in our experiments, so the ring cavity can be compacted into a smaller size with 80 dB signal-to-noise ratio for the output pulse sequence. Such a compact, low cost and high stability Q-switched laser maybe expected to have the more extensive application prospect.

    关键词: Q-switched fiber laser,Nanomaterials,Saturable absorber

    更新于2025-11-28 14:24:03

  • Up-Converting Lanthanide Fluoride Core@Shell Nanorods for Luminescent Thermometry in the First and Second Biological Windows - β-NaYF4: Yb3+, Er3+@SiO2 Temperature Sensor

    摘要: Up-converting core@shell type β-NaYF4:Yb3+-Er3+@SiO2 nanorods have been obtained by a two-step synthesis process, which encompasses hydrothermal and microemulsion routes. The synthesized nanomaterial forms stable aqueous colloids and exhibits a bright dual-center emission (λex= 975 nm), i.e. up-conversion luminescence of Er3+ and down-shifting emission of Yb3+, located in the first (I-BW) and the second (II-BW) biological windows of the spectral range. The intensity ratios of the emission bands of Er3+ and Yb3+ observed in the Vis-NIR range monotonously change with temperature, i.e. the thermalized Er3+ levels (2H11/2→4I15/2/4S3/2→4I15/2) and the non-thermally coupled Yb3+/Er3+ levels (2F5/2→2F7/2/4I9/2→4I15/2 or 4F9/2→4I15/2). Hence, their thermal evolutions have been correlated with temperature using the Boltzmann type distribution and 2-th order polynomial fits for temperature sensing purposes, i.e. Er3+ 525/545 nm (max Sr = 1.31 %K-1) and Yb3+/Er3+ 1010/810 nm (1.64 %K-1) or 1010/660 nm (0.96 %K-1). Additionally, a fresh chicken breast was used as a tissue imitation in the performed ex vivo experiment, showing the advantage of the use of NIR Yb3+/Er3+ bands, vs. the typically used Er3+ 525/545 nm band ratio, i.e. better penetration of the luminescence signal through the tissue in the I-BW and II-BW. Such nanomaterials can be utilized as accurate and effective, broad-range Vis-NIR optical, contactless sensors of temperature.

    关键词: Up-conversion luminescence,Luminescence intensity ratio (LIR),Functional nanomaterials,Rare earth ions,Energy transfer,Optical thermometer

    更新于2025-11-25 10:30:42

  • Synthesis of hybrid zinc-based materials from ionic liquids: a novel route to prepare active Zn catalysts for the photoactivation of water and methane

    摘要: A new and simple route for the preparation of zinc-based materials is proposed in this work. The synthesis of zinc oxide from the hydrolysis of imidazolium trichlorozincate ionic liquids (ILs) produces catalytic active nanostructured materials, where the size and shape (irregular particles, nanorods) are dependent on the synthetic conditions employed. Indeed, the hydrolysis of trichlorozincate ILs prepared by an equimolar ionic liquid:ZnCl2 ratio afforded irregular particles, while increasing the IL amount (2:1 and 4:1) drives to the formation of nanorods. These hybrid zinc oxide materials were able to promote the photoactivation of water and methane at 25 °C affording up to 1417 μmolH2.g-1.h-1 and up to 67 μmolCO2.g-1.h-1, respectively. Moreover, tuning the reaction conditions a microstructured zinc-based mineral named simonkolleite was prepared with the expected hexagonal-like morphology. This compound was also applied as an alternative and efficient photocatalyst in the activation of water (972 μmolH2.g-1.h-1) and methane (12.6 μmolCO2.g-1.h-1).

    关键词: Zinc oxide,photocatalysis,semiconductors,simonkolleite,ionic liquids,nanomaterials

    更新于2025-11-21 11:18:25

  • Intriguing “chameleon” fluorescent bioprobes for the visualization of lipid droplet-lysosome interplay

    摘要: The interplay of lipid droplets (LDs) and lysosome plays an important role in cell metabolism, and the visualization of this process can provide useful information of organelle communication and function. However, fluorescent bioprobes based on organic fluorophores that can respond to LD-lysosome interplay are much rare. Herein, fluorescent bioprobes with high photostability, excellent biocompatibility and intracellular polarity sensitivity are achieved by encapsulating a new red fluorogenic molecule TPA-BTTDO within polymeric matrix (DSPE-PEG2000). They can sequentially localize in lysosome and LDs with red and cyan emissions, respectively. By monitoring the emission color change, the interesting dynamic processes of the probes escaping from lysosome and then enriching in LDs, and finally returning to lysosome after LDs consumption are visualized. In addition, the tracing of dynamic movement and consumption of LDs is realized by the probes with a high signal-to-noise ratio. The unique labeling behaviors and distinguished dual emissions of the probes in LDs and lysosome make them promising agents for fluorescence visualization studies of LD-lysosome related bioprocess and metabolism diseases.

    关键词: lipid droplet,aggregation-induced emission,nanomaterials,lysosome,fluorescent bioprobe

    更新于2025-11-21 11:08:12

  • Preclinical Study of Biofunctional Polymer-Coated Upconversion Nanoparticles

    摘要: Upconversion nanoparticles (UCNPs) are new-generation photoluminescent nanomaterials gaining considerable recognition in the life sciences due to their unique optical properties that allow high-contrast imaging in cells and tissues. UCNP applications in optical diagnosis, bioassays, therapeutics, photodynamic therapy, drug delivery, and light-controlled release of drugs are promising, demanding a comprehensive systematic study of their pharmacological properties. We report on production of biofunctional UCNP-based nanocomplexes suitable for optical microscopy and imaging of HER2-positive cells and tumors, as well as on the comprehensive evaluation of their pharmacokinetics, pharmacodynamics, and toxicological properties using cells and laboratory animals. The nanocomplexes represent a UCNP core/shell structure of the NaYF4:Yb,Er,Tm/NaYF4 composition coated with an amphiphilic alternating copolymer of maleic anhydride with 1-octadecene (PMAO) and conjugated to the Designed Ankyrin Repeat Protein (DARPin9-29) with high affinity to the HER2 receptor. We demonstrated the specific binding of UCNP-PMAO-DARPin to HER2-positive cancer cells in cultures and xenograft animal models allowing the tumor visualization for at least 24 h. An exhaustive study of the general and specific toxicity of UCNP-PMAO-DARPin including the evaluation of their allergenic, immunotoxic, and reprotoxic properties was carried out. The obtained experimental body of evidence leads to a conclusion that UCNP-PMAO and UCNP-PMAO-DARPin are functional, non-cytotoxic, biocompatible, and safe for imaging applications in cells, small animals, and prospective clinical applications of image-guided surgery.

    关键词: nanotoxicology,pharmacodynamics,pharmacokinetics,animal imaging,upconversion nanoparticles,photoluminescent nanomaterials

    更新于2025-11-21 11:08:12

  • Vanadium salt assisted solvothermal reduction of graphene oxide and the thermoelectric characterisation of the reduced graphene oxide in bulk and as composite

    摘要: The solvothermal reduction of graphene oxide (GO), modified by the addition of vanadium chloride, resulted in an increased reduction degree of the reduced graphene oxide (rGO), which is reflected by a remarkably increased electrically conductivity of up to 8.5 S/cm, a value 30 times higher than that of rGO prepared without vanadium salt addition. Parallel with this increase, the thermoelectrical properties of rGO are improved, with a reached maximum Seebeck coefficient of 13.7 μV/K. The rGOs were used as fillers in flexible styrene-butadiene-styrene triblock copolymer composites prepared by solution mixing. Compared to the traditionally prepared reduced graphene oxide, the new product provides up to 60 times higher conductivity to the composite, while the Seebeck coefficient is nearly the same. The highest power factor of 4.6 x 10-4 μW/(m·K2) was achieved at 100 °C with 30 wt% loading, which is 30 times higher than that of the traditional reduced graphene oxide containing composite.

    关键词: nanomaterials,functional materials,energy materials,composites,polymers

    更新于2025-11-19 16:56:35

  • Significantly Enhanced Energy Density by Tailoring the Interface in a Hierarchical-Structured TiO2-BaTiO3-TiO2 Nanofillers in PVDF Based Thin Film Polymer Nanocomposite

    摘要: Dielectric polymer nanocomposites with high breakdown field and high dielectric constant have drawn significant attention in modern electrical and electronic industries due to their potential applications in dielectric and energy storage systems. The interfaces of the nanomaterials play a significant role in improving the dielectric performance of polymer nanocomposites. In this work, polydopamine (dopa) functionalized TiO2-BaTiO3-TiO2 (TiO2-BT-TiO2@dopa) core@double-shell nanoparticles have been developed as novel nanofillers for high energy density capacitor application. The hierarchically designed nanofillers help in tailoring the interfaces surrounding the polymer matrix as well as act as individual capacitors in which core and outer TiO2 shell functions as capacitor plate because of their high electrical conductivity while the middle BT layer functions as a dielectric medium due to high dielectric constant. Detailed electrical characterizations have revealed that TiO2-BT-TiO2@dopa/PVDF possess maximum relative dielectric permittivity (εr), breakdown strength (Eb), as well as energy densities in comparison to PVDF, TiO2/PVDF, TiO2@dopa/PVDF, TiO2-BT@dopa/PVDF polymer nanocomposites. The εr and energy density of TiO2-BT-TiO2@dopa/PVDF was 12.6 at 1 kHz and 4.4 J cm-3 at 3128 kV cm-1, respectively, which was comparatively much higher than commercially available biaxially oriented polypropylene (BOPP) having εr of 2.2 and the energy density of 1.2 J cm-3 at much higher electric field of 6400 kV cm-1. It is expected that these results will further open new avenues for the design of novel architecture for high-performance polymer nanocomposites-based capacitors having core@multishell nanofillers with tailored interfaces.

    关键词: capacitors,polymer nanocomposites,core-shell nanomaterials,dielectrics,BaTiO3 nanoparticles

    更新于2025-11-14 15:19:41

  • Efficient removal of cationic dyes from water by a combined adsorption-photocatalysis process using platinum-doped titanate nanomaterials

    摘要: In this study, two types of titanate nanomaterials (TNMs) including titanate nanosheets (TNS) and titanate nanotubes (TNT) were hydrothermally prepared by controlling reaction times, and then the platinum (Pt)-doped TNMs were fabricated. The photocatalytic performance of as-prepared materials was compared with that of the commercially available TiO2 P25. It was revealed that changing the morphology of TiO2 particles could enhance their adsorption ability and photocatalytic activity for the removal of cationic dyes from water. In particular, all prepared materials displayed greater removal of methylene blue than of P25 through the synergy of adsorption and photocatalysis; however, such an effect was not so pronounced for anionic dyes. For cationic dyes (methylene blue and rhodamine B) and anionic dyes (methyl orange and naphthol blue–black), TNT presented higher photocatalytic activity than TNS. The TNMs, after Pt doping, significantly enhanced photocatalytic activity compared to the pristine ones. Remarkably, 0.5% by weight Pt-doped TNS achieved 100% removal of methylene blue and rhodamine B after 120 min and 140 min of UV irradiation, respectively, outperforming P25, although Pt-doped TNMs showed lower photocatalytic performance than P25 for anionic dyes.

    关键词: Photocatalysis,Cationic dyes,Titanate nanomaterials,Adsorption,Platinum doping

    更新于2025-11-14 15:13:28

  • Phase engineering and optical properties of 2D MoSe2: Promise and pitfalls

    摘要: Phase engineering monolayer MoS2, selectively controlling the MoS2 2H to 1T′ transition via lithium intercalation, has driven recent excitement in the nanoscale electronics field, due to resultant MoS2 contact resistance reduction and the compatibility of MoS2 with CMOS device architecture. Here, we report the “on-chip” 2H to 1T′ transition for the related MoSe2 system, which has a smaller 1.55 eV 2H bandgap, and for which the 1T′ phase transformation should be more energetically favorable. We report the first on-chip 2H to 1T′ transformation of monolayer MoSe2 on both SiO2 and sapphire substrates. The on-chip 1T′eMoSe2 shows higher transparency despite an increased number of metallic states, indicating tunable optoelectronic properties with potential applications in transparent electrodes and energy harvesting. We also describe the challenges introduced by on-chip phase engineering via n-butyllithium exposure. Density functional theory (DFT) calculations indicate that Li+ ions are required on both sides of the MoSe2 monolayer to create a strong thermodynamic driving force for the 1T′ transformation. We observe that patterned n-butyllithium exposures can be inconsistent, with widely variable kinetics. Due to manifest n-butyllithium-engineered 1T′ MoSe2 stability concerns we propose the process is an unreliable processing technique for 2D electronics.

    关键词: MoSe2,2D materials,Phase engineering,Nanomaterials

    更新于2025-09-23 15:23:52

  • Near-Infrared-Light Activatable Nanoparticles for Deep-Tissue-Penetrating Wireless Optogenetics

    摘要: Optogenetics has been developed to control the activities and functions of cells with high spatiotemporal resolution, cell-type specificity, and flexibility. However, current optogenetic tools generally rely on visible light (e.g., blue or yellow) with shallow tissue penetration ability that does require invasive fiber-optic probes to deliver visible light into organs and animal tissues. This often results in a series of side effects, such as tissue damage and unwanted inflammation. Fortunately, the emerging wireless optogenetic tools that can respond to deep-tissue-penetrating near-infrared (NIR) light have attracted increasing attention due to their much-reduced damage to living organisms. There are mainly two types of NIR-activatable optogenetic tools: one uses lanthanide-doped upconversion nanoparticles to transduce NIR light to visible light to modulate classical opsin-expressing neurons; the other type couples with an NIR absorber to convert NIR light to heat to activate thermosensitive proteins. These NIR-activatable optogenetic tools enable low-invasive 'remote control' activation and inhibition of cellular signaling pathways. This approach has great potential to help create more innovative therapies for diseases like cancer, diabetes, and neuronal disorders in the near future. Therefore, this review article summarizes the recent advances on design strategies and synthetic methods of NIR-activatable nanomaterials for wireless optogenetic applications.

    关键词: nanomaterials,near infrared,optogenetics,photothermal,upconversion

    更新于2025-09-23 15:23:52