修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • In-flame soot quantification of diesel sprays under sooting/non-sooting critical conditions in an optical engine

    摘要: Because of the challenge of meeting stringent emissions regulations for internal combustion engines, some advanced low temperature combustion modes have been raised in recent decades to improve combustion efficiency. Therefore, detailed understanding and capability for accurate prediction of in-flame soot processes under such low sooting conditions are becoming necessary. Nowadays, a lot of investigations have been carried out to quantify in-flame soot in Diesel sprays under high sooting conditions by means of different optical techniques. However, no information of soot quantification can be found for sooting/non-sooting critical conditions. In current study, the instantaneous soot production in a two-stroke optical engine under low sooting conditions has been measured by means of a Diffused back-illumination extinction technique (DBI) and two-color method (2C) simultaneously. The fuels used were n-dodecane and n-heptane, which have been injected separately though two different injectors equipped with single-hole nozzles. A large cycle-to-cycle variation on soot production can be observed under such operating conditions, however the in-cylinder heat release traces were quite repeatable. It is the same with the well-known trends of soot amount to operating conditions that the probability of sooting cycles increases with higher ambient temperature, higher ambient density and lower injection pressure. Both techniques present a pretty good agreement on soot amount when the peak of KL value is close to 1. However, the KL value of two-color method becomes bigger than that of DBI and the difference increases with lower sooting conditions.

    关键词: 2C,Soot critical conditions,DBI,Diesel sprays,Optical engine

    更新于2025-09-23 15:23:52

  • [IEEE 2018 IEEE CPMT Symposium Japan (ICSJ) - Kyoto, Japan (2018.11.19-2018.11.21)] 2018 IEEE CPMT Symposium Japan (ICSJ) - 400G Multi-Mode and Single-Mode Optical Transmitter Realized by Hybrid-Integrated Silicon Interposer for Data Center Application

    摘要: We experimentally demonstrated both 400G multi-mode (MM) and single-mode (SM) optical engines based on Silicon interposer to hybrid integrate laser dice, optics, and fiber arrays. The interposer realized by Silicon bulk micro-machining makes the engine very compact and easily assembled by the built-in Silicon precision. Clear optical eyes with TDECQ of 1.7dB and of 2.7 dB are obtained for 50Gb/s VCSEL in MM optical engine and 100Gb/s EML in SM one, respectively.

    关键词: Optical Engine,Hybrid-Integration,VCSEL,Optical Sub-Assembly (OSA),and EML Laser,Silicon Interposer,Silicon Photonics

    更新于2025-09-23 15:22:29

  • Optical analysis of flame inception and propagation in a lean-burn natural-gas spark-ignition engine with a bowl-in-piston geometry

    摘要: Heavy-duty diesel engines can convert to lean-burn natural-gas spark-ignition operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector to initiate and control combustion. However, the combustion phenomena in such converted engines usually consist of two distinct stages: a fast-burning stage inside the piston bowl followed by a slow-burning stage inside the squish area. This study used flame luminosity data and in-cylinder pressure measurements to analyze flame propagation inside a bowl-in-piston geometry. The experimental results showed a low coefficient of variation and standard deviation of peak cylinder pressure, moderate rate of pressure rise, and no knocking for the lean-burn (equivalence ratio 0.66), low-speed (900 r/min), and medium-load (6.6 bar IMEP) operating condition. Flame inception had a strong effect on the flame expansion velocity, which increased fast once the flame kernel established, but it reduced near the bowl edge and the entrance of the narrow squish region. However, the burn inside the bowl was very fast. In addition, the long duration of burn inside the squish indicated a much lower flame propagation speed for the outside-the-bowl combustion, which contributed to a long decreasing tail in the apparent heat release rate. Furthermore, cycles with fast flame inception and fast burn inside the bowl had a similar end of combustion with cycles with delayed flame inception and then a retarded burn inside the bowl, which indicated that the combustion inside the squish region determined the combustion duration. Overall, the results suggested that the spark event, the flame development inside the piston bowl, and the start of the second combustion stage affected the phasing and duration of the two combustion stages, which (subsequently) can affect engine efficiency and emissions of diesel engines converted to a lean-burn natural-gas spark-ignition operation.

    关键词: spark ignition,Optical engine,combustion,bowl-in-piston,natural gas

    更新于2025-09-23 15:22:29

  • Lean combustion analysis using a corona discharge igniter in an optical engine fueled with methane and a hydrogen-methane blend

    摘要: The robustness of combustion initiation is one of the main issues of actual spark-ignition engines, especially for highly-diluted or lean mixtures. In this work, the effects on combustion stabilization obtained by the usage of a radio-frequency corona igniter were evaluated on a single-cylinder optical engine. The comparison with a conventional spark igniter was carried out using pure methane fuel and a blend of hydrogen and methane. For each combination of fuel and igniter, the combustion stability was explored at different air–fuel ratios, from stoichiometric conditions to the lean stable limit (up to λ = 2.0 with the corona igniter and the hydrogen-methane mixture). The combustion analysis was carried out by using the synchronized indicating and imaging data. The latter is essential to estimate the contribution of the corona igniter, which was found to be considerable only before the 5% of mass fraction burned. The corona effect igniter, with respect to a conventional spark igniter, was able to extend the lean stable limit of about 0.15 λ units with methane fuel, and about 0.10 λ units with the hydrogen-methane blend in the tested engine point. Early flame analysis confirmed the capability of corona igniter to improve combustion onset speed and to obtain a more stable and repeatable flame kernel. The findings of this study can help for a better implementation of corona ignition with gaseous low-carbon fuels, and in particular to achieve a higher lean limit extension without the drawback of a performance decay given by a substantial hydrogen enrichment.

    关键词: Hydrogen,Lean combustion,Corona ignition,Methane,Optical engine

    更新于2025-09-12 10:27:22