修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

57 条数据
?? 中文(中国)
  • One-step growth of reduced graphene oxide on arbitrary substrates

    摘要: Reduced graphene oxide (rGO) has inherited the outstanding electronic, optical, thermal and mechanical properties of graphene to a large extent, while maintaining sufficient chemically active sites. Therefore, it has attracted a great deal of research attention in the fields of energy storage, electronics, photonics, catalysis, environmental engineering, etc. Currently, the most popular way to prepare rGO is to reduce graphene oxide, which is obtained by modified Hummer methods using tedious treatments in a harsh environment, to rGO flakes. Industrial applications demand advanced preparation methods that can mass produce highly uniform rGO sheets on arbitrary substrates. In this work, a one-step growth process is introduced that utilizes cellulose acetate as a precursor, without any catalysts, to produce uniform ultrathin rGO films on various substrates and free-standing rGO powders. Systematic spectroscopic and microscopic studies on the resulting rGO are performed. Prototypes of electronic and optoelectronic devices, such as field effect transistors (FETs), photodetectors, and humidity sensors, are fabricated and tested, demonstrating the intriguing applications of our rGO materials across a wide range of fields.

    关键词: electronic devices,reduced graphene oxide,one-step growth,cellulose acetate,optoelectronic devices

    更新于2025-11-21 11:03:25

  • Highly flexible self-powered photodetectors based on core–shell Sb/CdS nanowires

    摘要: Flexible photodetectors have great applications in flexible image sensors, wearable electronics and smart robots. In this work, we reported the fabrication of highly flexible self-powered photodetectors with core-shell Sb/CdS nanowires as the sensing materials. The fabricated device exhibited high Ion/Ioff ratio of 3.54×103 under zero bias, fast speed of photoresponse and great stability. An open-circuit voltage of 0.35 V was generated due to the presence of CdS and CdSb interfaces within the core-shell nanowires. Besides, the photocurrent of the flexible device is nearly invariable at various bending angles and even after thousands of bending cycles, demonstrating the excellent flexibility and bending stability. The results indicated that the self-powered photodetectors are promising candidates for future passive optoelectronic devices.

    关键词: core-shell Sb/CdS nanowires,optoelectronic devices,self-powered,flexible photodetectors

    更新于2025-11-21 11:03:13

  • Impedance Spectroscopy: A Versatile Technique to Understand Solution-Processed Optoelectronic Devices

    摘要: Solution-processed optoelectronic devices based on conjugated polymers, colloidal quantum dots (CQDs), halide perovskites, and so on are now emerging as a new-generation semiconductor technology which prevails its conventional counterparts in terms of low fabrication cost, ease of scalable manufacturing, and abundant material designability. However, the solution-processed thin films obtained through spin-coating, spray, inkjet printing, and doctor blading usually suffer from low film quality and a high defect density especially at the interfaces of different functional layers. Currently, the most significant subject is to address the non-ideal interfaces for achieving improved performance of the devices. Impedance spectroscopy (IS) is a universal technique that can help to examine the charge behavior at the interfaces in an electrochemical or solid-state multilayered device. Owing to its ability to elucidate the charge transfer, charge transport, and accumulation within the interfaces of electrochemical or multilayered devices with minimal effects to the devices themselves, the use of IS has increased vividly in the last decades. This review provides the basic principles of IS and its applications on solution-processed optoelectronic devices.

    关键词: optoelectronic devices,metal halide perovskites,quantum dots,impedance spectroscopy,solution processing

    更新于2025-09-23 15:22:29

  • Copper Nanowire Dispersion through an Electrostatic Dispersion Mechanism for High-Performance Flexible Transparent Conducting Films and Optoelectronic Devices

    摘要: Highly dispersed copper nanowire (CuNW) is an essential prerequisite for its practical application in various electronic devices. At present, the dispersion of CuNW is almost realized through the steric hindrance effect of polymers. However, the high post-treatment temperature of polymers makes this dispersion mechanism impractical for many actual applications. Here, after investigating the relationships between the electrostatic dispersion force and influence factors, an electrostatic dispersion mechanism is refined by us. Under the guidance of this mechanism, high dispersion of CuNW and a record low post-treatment temperature (80 ℃ ) are realized simultaneously. The high dispersity endows CuNW with good stability (–45.66 mV) in water-based ink, high uniformity (65.7 ± 2.5 Ω sq-1) in the prepared transparent conducting film (TCF) (23 cm × 23 cm) and industrial film-preparation process which are the issues that hinder the widespread application of CuNW-based TCF at present. The low post-treatment temperature makes CuNW possible for applying on any substrate. In addition, the charge modifier, 2-mercaptoethanol, enables CuNW to resist oxidation well. Finally, flexible optoelectronic devices employing the CuNW film as the electrode are fabricated and show efficiencies comparable to those of optoelectronic devices on ITO/glass.

    关键词: copper nanowires,flexible optoelectronic devices,electrostatic dispersion mechanism,transparent conducting films,post-treatment temperatures

    更新于2025-09-23 15:22:29

  • Complete trapping of light with asymmetric plasmonic resonator arrays

    摘要: Trapping/absorption of light in metallic micro/nano-structures on a dielectric-interspaced metal layer were widely studied, but discrepancies in results suggests uncertainty in its perfectness. Here we propose a modified structure with asymmetric resonance elements in each unit cell for complete trapping/absorption of light. In principle, the coupled asymmetric resonators oscillate anti-symmetrically under a critical matching condition, such that leaky radiations from the resonance elements are fully canceled in the far field, which results in guaranteed complete trapping/absorption of light in the near field. The structure may be applied in optoelectronic and bio-chemical sensing devices for strong light–matter interactions.

    关键词: plasmonic resonator arrays,light trapping,optoelectronic devices,bio-chemical sensing,asymmetric resonators

    更新于2025-09-23 15:21:01

  • Manipulating Optical Absorption of Indium Selenide Using Plasmonic Nanoparticles

    摘要: In this work, we propose using periodic Au nanoparticles (NPs) in indium selenide-based optoelectronic devices to tune the optical absorption of indium selenide. Electromagnetic simulations show that optical absorption of indium selenide can be manipulated by tuning plasmonic resonance. The e?ect on the plasmonic resonance of the size, period of NPs, the thickness of silicon oxide, and the insulator spacer is systematically analyzed. A high absorption enhancement over the visible spectrum is achieved through systematic optimization of nanostructures.

    关键词: optoelectronic devices,indium selenide,optical absorption,plasmonic nanoparticles,plasmonic resonance

    更新于2025-09-23 15:21:01

  • Synthesis, DFT studies, fabrication, and optical characterization of the [ZnCMC] <sup>TF</sup> polymer (organic/inorganic) as an optoelectronic device

    摘要: A novel carboxymethyl cellulose zinc thin film [ZnCMC]TF was fabricated using the sol–gel technique. Different characterization techniques such as Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, ultraviolet–visible spectroscopy (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and the optical properties were used to study the properties of [ZnCMC]TF. The molecular structure, FTIR, and optical properties were optimized. The Raman spectrum of the [ZnCMC]TF complex shows several bands in the range of 72–556 cm?1 due to (nZn–O) stretching and (Zn–O) bending, which is an obvious distinction between the FTIR and Raman spectra of [ZnCMC]TF. The optimization was performed using density functional theory (DFT) by DMol3 and Cambridge Serial Total Energy Package (CASTEP) program. The chemical structure was confirmed by spectroscopic and structural properties for both CMC and [ZnCMC]TF; the XRD results showed the same crystal structure (Monoclinic 2). [ZnCMC]TF has a larger grain size than CMC and has a similar behavior in the optical gap energy. The optical constants increased with increasing photon energy, refractive index n, absorption index k, and optical conductivity. The SEM images provide very good evidence in favor of the reaction of zinc transition metal with CMC for the formation of the [ZnCMC]TF complex. The resulting [CMC] spherical thin film and the [ZnCMC]TF polymeric nanorods were examined by different techniques including TEM and EDX. The optical properties obtained from the simulated FTIR, XRD, and CASTEP are in good agreement with those obtained from the experimental studies on CMC and ZnCMC. Based on the optical findings, [ZnCMC]TF is a promising candidate in applications such as solar cells and optoelectronic devices.

    关键词: TEM,DMol3,zinc thin film,carboxymethyl cellulose,UV-Vis,DFT,optoelectronic devices,XRD,EDX,CASTEP,sol–gel technique,SEM,FTIR,optical properties,Raman spectroscopy

    更新于2025-09-23 15:21:01

  • Two-dimensional Hybrid Halide Perovskites: Principles and Prom-ises

    摘要: Hybrid halide perovskites have become the “next big thing” in emerging semiconductor materials as the past decade witnessed their successful application in high-performance photovoltaics. This resurgence has seen enormous and widespread development of the three-dimensional (3D) perovskites, spearheaded by CH3NH3PbI3. The next generation of halide perovskites, however, is characterized by reduced dimensionality perovskites, emphasizing on the two-dimensional (2D) perovskite derivatives which expand as a more diverse subgroup of semiconducting hybrids that possesses even higher tunability and excellent photophysical properties. In this perspective, we begin with a historical flashback that traces back to early reports before the “perovskite fever” and we follow this original work to its fruition in the present day, where 2D halide perovskites are on the spotlight of current research, thriving on several aspects of high-performance optoelectronics. We approach the evolution of 2D halide perovskites from a structural perspective, providing a classification for the diverse structure-types of the materials, which largely dictate the unusual physical properties observed. We sort out the 2D hybrid halide perovskite based on two key components: the inorganic layers and their modification and the organic cation diversity. As these two heterogeneous components blend, either by synthetic manipulation (shuffling the organic cations or inorganic elements) or by external stimuli (temperature and pressure), the modular perovskite structure evolves to construct crystallographically defined quantum wells (QW). The complex electronic structure that arises is sensitive to the structural features that could be in turn used as a knob to control the dielectric and optical properties the QWs. We conclude this perspective with the most notable optoelectronic device achievements that have been demonstrated to date with an eye towards future material discovery and potential technological developments.

    关键词: two-dimensional (2D) perovskite derivatives,optoelectronic devices,quantum wells (QW),Hybrid halide perovskites,semiconducting hybrids

    更新于2025-09-23 15:21:01

  • Ethanol–water-assisted room temperature synthesis of CsPbBr3/SiO2 nanocomposites with high stability in ethanol

    摘要: All-inorganic halide perovskites have attracted great attention by virtue of the merits of bright emission, tunable wavelength and narrow-band emission. Despite the excellent optical features, all-inorganic halide perovskite materials have suffered from intrinsic instability, which has limited their applications in various optoelectronic devices. To mitigate the intractable issue, we demonstrated the CsPbBr3 nanoparticles decorated with smaller SiO2 nanocrystals to passivate the surface defects; SiO2 nanoparticles were applied as a barrier layer to maintain the optical property and enhance environmental stability. A facile in situ method was proposed to prepare CsPbBr3/SiO2 nanocomposites, in which an environmental ethanol/water solvent system was needed with the addition of tetraethyl orthosilicate (TEOS) as a silicon precursor. The obtained CsPbBr3/SiO2 nanocomposites have better optical characteristic and stability than bare CsPbBr3 nanoparticles. Even 70% photoluminescence intensity of as-prepared CsPbBr3/SiO2 nanocomposites can be maintained after 168 h storage in ethanol. This newly developed synthesis will open up a new route for the fabrication of optoelectronic devices in an environmentally friendly way, and the as-obtained perovskite materials with improved stability will make them great potential for multifunctional optoelectronic devices.

    关键词: Ethanol–water-assisted room temperature synthesis,All-inorganic halide perovskites,High stability,CsPbBr3/SiO2 nanocomposites,Optoelectronic devices

    更新于2025-09-23 15:21:01

  • Prospects of Coupled Organica??Inorganic Nanostructures for Charge and Energy Transfer Applications

    摘要: We review the field of organic-inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface.

    关键词: Inorganic Nanostructures,Self-Assembly,Organic π-Systems,Optoelectronic Devices,Plasmonics

    更新于2025-09-23 15:19:57