修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • Grinding Synthesis of APbX3 (A=MA, FA, Cs; X=Cl, Br, I) Perovskite Nanocrystals

    摘要: Currently, metal halide perovskite nanocrystals have been extensively explored due to their unique optoelectronic properties and wide application prospects. In the present work, a facile grinding method is developed to prepare whole-family APbX3 (A=MA, FA and Cs; X=Cl, Br and I) perovskite nanocrystals. This strategy alleviates the harsh synthesis conditions of precursor dissolution, atmosphere protection and high temperature. Impressively, the as-prepared perovskite nanocrystals are evidenced to have halogen-rich surfaces and yield visible full-spectral emissions with maximal photoluminescence quantum yield up to 92% and excellent stability. Additionally, the grinding method can be extended to synthesize widely concerned Mn2+-doped CsPbCl3 nanocrystals with dual-modal emissions of both excitons and dopants. As a proof-of-concept experiment, the present perovskite nanocrystals are demonstrated to be applicable as blue/green/red color converters in UV-excitable white-light-emitting diode.

    关键词: perovskite,CsPbBr3,optical materials,luminescence,LED

    更新于2025-11-20 15:33:11

  • Enhancement of Photoluminescence Quantum Yield and Stability in CsPbBr3 Perovskite Quantum Dots by Trivalent Doping

    摘要: We determine the influence of substitutional defects on perovskite quantum dots through experimental and theoretical investigations. Substitutional defects were introduced by trivalent dopants (In, Sb, and Bi) in CsPbBr3 by ligand-assisted reprecipitation. We show that the photoluminescence (PL) emission peak shifts toward shorter wavelengths when doping concentrations are increased. Trivalent metal-doped CsPbBr3 enhanced the PL quantum yield (~10%) and air stability (over 10 days). Our findings provide new insights into the influence of substitutional defects on substituted CsPbBr3 that underpin their physical properties.

    关键词: ligand-assisted reprecipitation,trivalent doping,nanocrystals,perovskite,CsPbBr3

    更新于2025-09-23 15:19:57

  • Efficiency Enhancement of Perovskite CsPbBr <sub/>3</sub> Quantum Dot Light-emitting Diodes by Doped Hole Transport Layer

    摘要: Balanced charge injection is essential to high-performance Perovskite CsPbBr3 quantum dot-based light-emitting diodes (QLEDs). However, low mobility of hole-transport materials (HTMs) severely restrict improving performance of QLEDs. Herein, we provide a novel HTMs to improve the highest occupied molecular orbital (HOMO) energy level structure and carrier mobility by doping poly (9-vinlycarbazole) (PVK) and poly [N, N′-bis(4-butylphenyl)-N, N′-bis(phenyl) benzi-dine] (poly-TPD). We also introduce poly (methyl methacrylate) (PMMA) as electron block layer to further achieve charge injection balance. Finally, an enhanced external quantum efficiency (EQE) of 0.53% and 414.83 cd/m2 was obtained. Compared with the untreated QLED, this result has been 8-fold enhanced, provides a new approach to attain better performance.

    关键词: Quantum Dot Light-emitting Diodes,Efficiency Enhancement,Perovskite CsPbBr3,Hole Transport Layer

    更新于2025-09-19 17:13:59

  • High-Quality All-Inorganic Perovskite CsPbBr3 Quantum Dots Emitter Prepared by a Simple Purified Method and Applications of Light-Emitting Diodes

    摘要: High-quality perovskite CsPbBr3 quantum dots (QDs-CsPbBr3) were prepared using the ultrasonic oscillation method, which is simple and provides variable yield according to requirements. The emission spectra over a large portion of the visible spectral region (450–650 nm) of QD-CsPbX3 (X = Cl, Br, and I) have tunable compositions that can be halide exchanged using the halide anion exchange technique and quantum size-effects. A strong peak with high intensity of (200) lattice plane of purified QDs-CsPbBr3 film is obtained, confirming the formation of an orthorhombic perovskite crystal structure of the Pnma space group. The photoluminescence of QDs-CsPbBr3 was characterized using a narrow line-width emission of 20 nm, with high quantum yields of up to 99.2%, and radioactive lifetime increasing to 26 ns. Finally, through the excellent advantages of QDs-CsPbBr3 mentioned above, purified perovskite QDs-CsPbBr3 as an active layer was utilized in perovskite quantum dot light-emitting diodes structure applications. As a result, the perovskite QDs-CsPbBr3 light-emitting diodes (LEDs) exhibits a turn-on voltage of 7 V and a maximum luminance of 5.1 cd/m2.

    关键词: all-inorganic halide perovskite,perovskite CsPbBr3,quantum dot light-emitting diodes,quantum dots

    更新于2025-09-11 14:15:04

  • Analysis of aqueous systems using all-inorganic perovskite CsPbBr3 quantum dots with stable electrochemiluminescence performance using a closed bipolar electrode

    摘要: All-inorganic perovskite CsPbX3 (X = Cl, Br, I) quantum dots (QDs) have emerged as a new class of semiconductor nanocrystals, but the stability of CsPbX3 QDs in polar solvents is still a significant challenge. Since most targets in analytical chemistry, especially for biological detection, exist in an aqueous medium, this weakness seriously hampers practical analytical applications of CsPbX3 QDs. In this work, we introduce a closed bipolar electrode (BPE) to extend the application of perovskite QDs to aqueous systems. Based on the principle of conservation of charge in the electrode reactions at opposite ends of the BPE, the concentration of H2O2 in an aqueous medium can be detected by measuring the ECL intensity of CsPbBr3 QDs in an organic solution. Thus, for the first time, H2O2 in an aqueous system has been successfully analyzed using all-inorganic perovskite CsPbBr3 QDs with stable electrochemiluminescence performance combined with a closed bipolar electrode chip.

    关键词: Bipolar electrode,Electrochemiluminescence,Perovskite,CsPbBr3 QDs

    更新于2025-09-11 14:15:04