- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Recent Progress on Near-Infrared Photoacoustic Imaging: Imaging Modality and Organic Semiconducting Agents
摘要: Over the past few decades, the photoacoustic (PA) effect has been widely investigated, opening up diverse applications, such as photoacoustic spectroscopy, estimation of chemical energies, or point-of-care detection. Notably, photoacoustic imaging (PAI) has also been developed and has recently received considerable attention in bio-related or clinical imaging fields, as it now facilitates an imaging platform in the near-infrared (NIR) region by taking advantage of the significant advancement of exogenous imaging agents. The NIR PAI platform now paves the way for high-resolution, deep-tissue imaging, which is imperative for contemporary theragnosis, a combination of precise diagnosis and well-timed therapy. This review reports the recent progress on NIR PAI modality, as well as semiconducting contrast agents, and outlines the trend in current NIR imaging and provides further direction for the prospective development of PAI systems.
关键词: photoacoustic imaging,near-infrared,contrast agents,organic semiconductors
更新于2025-09-19 17:13:59
-
EXPRESS: A Study of the Surface of Fe <sub/>3</sub> O <sub/>4</sub> @SiO <sub/>2</sub> Nanoparticles Functionalized with Different Groups Using a Photoacoustic Infrared Spectroscopic Method
摘要: A permanent development of hybrid materials based on the highly absorptive or opaque materials has prompted a need of analytical tools, which are able to overcome obstacles connected with their physicochemical features. Iron oxide (II, III) (Fe3O4) nanoparticles gained a huge attention as supporters, as they are not only easily accessible using various synthetic approaches, but they also exhibit homogeneity and paramagnetic properties, which make them easily separable materials. Nevertheless, the classic infrared spectroscopic studies might meet several problems with characterization of such systems. Therefore, infrared spectroscopy in photoacoustic mode using Fourier transform infrared–photoacoustic infrared spectroscopy (FT-IR PAS) can be an extremely sensitive and exact analytical tool for investigation of the magnetite-based hybrid materials surface. Herein, we present a synthesis of Fe3O4 nanoparticles using co-precipitation method with their subsequent encapsulation within silica matrix decorated with different silanes containing various terminal functional groups. The proper syntheses of core/shell structures were confirmed using the FT-IR PAS method. Each spectrum exhibited specific bands corresponding to vibrations of magnetite particles, silica lattice and particular surface functional groups, which strictly indicated successful grafting of silanes onto Fe3O4 surface.
关键词: PAS,Magnetite nanoparticles,Fourier transform infrared,core/shell structures,surface analysis,photoacoustic infrared spectroscopy,FT-IR PAS,FT-IR
更新于2025-09-19 17:13:59
-
Noninvasive blood glucose detection by Quantum Cascade Laser
摘要: Quantum Cascade Laser (QCL) was invented in late 90s as a promising mid-infrared light source and contributed to the field of industry, military, medicine, and biology. The room temperature operation, watt-level output power, compact size, and wide tuning capability of this laser advanced the field of noninvasive blood glucose detection by exploring transmission, absorption, and photoacoustic spectroscopy. This review provides a complete overview of the recent progress and technical details of these spectroscopy techniques, using QCL as an infrared light source for detecting blood glucose concentration for diabetic patients.
关键词: transmission spectroscopy,Quantum Cascade Laser,mid-infrared,noninvasive blood glucose detection,photoacoustic spectroscopy,absorption spectroscopy
更新于2025-09-19 17:13:59
-
PEGylated-folic acida??modified black phosphorus quantum dots as near-infrared agents for dual-modality imaging-guided selective cancer cell destruction
摘要: Biological systems have high transparence to 700–1100-nm near-infrared (NIR) light. Black phosphorus quantum dots (BPQDs) have high optical absorbance in this spectrum. This optical property of BPQDs integrates both diagnostic and therapeutic functions together in an all-in-one processing system in cancer theranostic approaches. In the present study, BPQDs were synthesized and functionalized by targeting moieties (PEG-NH2-FA) and were further loaded with anticancer drugs (doxorubicin) for photodynamic–photothermal–chemotherapy. The precise killing of cancer cells was achieved by linking BPQDs with folate moiety (folic acid), internalizing BPQDs inside cancer cells with folate receptors and NIR triggering, without affecting the receptor-free cells. These in vitro experiments confirm that the agent exhibited an efficient photokilling effect and a light-triggered and heat-induced drug delivery at the precise tumor sites. Furthermore, the nanoplatform has good biocompatibility and effectively obliterates tumors in nude mice, showing no noticeable damages to noncancer tissues. Importantly, this nanoplatform can inhibit tumor growth through visualized synergistic treatment and photoacoustic and photothermal imaging. The present design of versatile nanoplatforms can allow for the adjustment of nanoplatforms for good treatment efficacy and multiplexed imaging, providing an innovation for targeted tumor treatment.
关键词: drug release,black phosphorus quantum dots,synergistic therapy,targeted,photoacoustic imaging
更新于2025-09-19 17:13:59
-
Ultrahigh Resolution Pulsed Laser-Induced Photoacoustic Detection of Multi-Scale Damage in CFRP Composites
摘要: This paper presents a photoacoustic non-destructive evaluation (pNDE) system with an ultrahigh resolution for the detection of multi-scale damage in carbon fiber-reinforced plastic (CFRP) composites. The pNDE system consists of three main components: a picosecond pulsed laser-based ultrasonic actuator, an ultrasound receiver, and a data acquisition/computing subsystem. During the operation, high-frequency ultrasound is generated by pulsed laser and recorded by an ultrasound receiver. By implementing a two-dimensional back projection algorithm, pNDE images can be reconstructed from the recorded ultrasound signals to represent the embedded damage. Both potential macroscopic and microscopic damages, such as surface notches and delamination in CFRP, can be identified by examining the reconstructed pNDE images. Three ultrasonic presentation modes including A-scan, B-scan, and C-scan are employed to analyze the recorded signals for the representation of the detected micro-scale damage in two-dimensional and three-dimensional images with a high spatial resolution of up to 60 μm. Macro-scale delamination and transverse ply cracks are clearly visualized, identifying the edges of the damaged area. The results of the study demonstrate that the developed pNDE system provides a non-destructive and robust approach for multi-scale damage detection in composite materials.
关键词: composites,non-destructive testing,photoacoustic,multi-scale,ultrasonic representation,embedded damage
更新于2025-09-19 17:13:59
-
Self-Assembled Carrier-Free Nanosonosensitizer for Photoacoustic Imaging-Guided Synergistic Chemo-Sonodynamic Cancer Therapy
摘要: As one of the most promising noninvasive therapeutic modalities, sonodynamic therapy (SDT) can focus the ultrasound energy on tumor sites located in deep tissue and locally activate the preloaded sonosensitizer to kill tumor cells. However, exploring sonosensitizers with high SDT efficacy and desirable biosafety is still a significant challenge. Herein, we utilized the hydrophilic-hydrophobic self-assembly technology to assemble the hydrophobic organic dye Ce6 and broad spectral anti-cancer agent Paclitaxel with hydrophilic organic dye IR783 to generate nanoscale sonosensitizer, Ce6-PTX@IR783, without introduction of extra nanomaterials into the fabrication to guarantee the high therapeutic biosafety and further potential clinical translation. The constructed nanodrug was endowed with external ultrasound-activatable chemo-sonodynamic effect and photoacoustic imaging performance via integrating multiple moieties into one nanosystem. Ce6 could enhance the sonodynamic effect, while PTX exerted chemotherapeutic effect, and IR783 was applied to increase tumor-specific accumulation and assist in fulfilling photoacoustic imaging. Especially, the small particle size (70 nm) of Ce6-PTX@IR783 contributed to the increased tumor accumulation via the enhanced permeability and retention effect. The high synergistically chemo-sonodynamic therapeutic efficacy has been successfully demonstrated in vitro and in vivo, in addition to the demonstrated high biodegradability, biocompatibility and biosafety. This facile self-assembly procedure provides an intriguing strategy for high-efficient utilization of hydrophobic drugs and is liable to realize large-scale production and further clinical translation.
关键词: self-assembly,nanosonosensitizer,photoacoustic imaging,chemo-sonodynamic therapy,sonodynamic therapy
更新于2025-09-19 17:13:59
-
Optical and Thermal Properties of Laser-Ablated Platinum Nanoparticles Graphene Oxide Composite
摘要: Platinum nanoparticles were synthesized in graphene oxide aqueous solution using a laser ablation technique to investigate the effect of optical linear, nonlinear and thermal properties of platinum-graphene oxide nanocomposite solution. The samples were prepared with different ablation times. The platinum nanoparticles that formed a spherical shape on the surface of graphene oxide solution were authenticated using UV-visible spectrum and transmission electron microscopy patterns. The particle size decreased with increasing ablation time, and the concentration and volume fraction of samples were increased. To obtain the optical linear, nonlinear and thermal properties of platinum-graphene oxide nanocomposite solution, UV-visible spectroscopy, Z-scan, thermal lens and photoacoustic techniques were used. Consequently, the linear and nonlinear refractive indices increased with an increase in the volume fraction of platinum nanoparticles. It was observed from the spatial self-phase modulation patterns that, the optical nonlinear property of the graphene oxide was enhanced in the presence of platinum nanoparticles, and the nonlinearity increased with an increase in the volume fraction of platinum nanoparticles inside the graphene oxide solution. The thermal diffusivity and thermal effusivity of platinum nanoparticles graphene oxide were measured using a thermal lens and photoacoustic methods, respectively. The thermal diffusivity and thermal effusivity of samples were in the range of 0.0341 × 10?5 m2/s to 0.1223 × 10?5 m2/s and 0.163 W s1/2 cm?2 K?1 to 0.3192 W s1/2 cm?2 K?1, respectively. Consequently, the platinum enhanced the optical and thermal properties of graphene oxide.
关键词: graphene oxide,z-scan,spatial self-phase modulation,Pt-NPs,platinum nanoparticles/graphene oxide composite,laser ablation,photoacoustic,thermal lens
更新于2025-09-16 10:30:52
-
Self-Assembled Polysaccharide–Diphenylalanine/Au Nanospheres for Photothermal Therapy and Photoacoustic Imaging
摘要: Gold-based nanomaterials have attracted extensive interest for potential application in photothermal therapy (PTT) owing to their distinctive properties including high photothermal transduction, biocompatibility, and low cytotoxicity. Herein, assembled gold nanoparticle architecture-based photothermal conversion agents were synthesized by using polysaccharides (alginate dialdehyde, ADA) as both the cross-linker to induce self-assembly of diphenylalanine (FF) and the reducer for in situ reduction of Au3+ ions into Au nanoparticles (Au NPs). The extinction spectrum of the obtained self-assembled ADA?FF/Au nanospheres was finely modulated into a near-infrared region by controlling the growth of Au NPs inside the assemblies. The strong plasmonic coupling effect of the assembled Au NPs also leads to high photothermal conversion (η = 40%) of the ADA?FF/Au nanospheres, hence presenting good performance in PTT and photoacoustic imaging. This synthesis technique is promising to construct nanomaterials with desired functions for potential biomedical application by self-assembly of various nanocrystals in situ.
关键词: self-assembly,photoacoustic imaging,photothermal therapy,biomedical application,gold-based nanomaterials
更新于2025-09-16 10:30:52
-
Effects of freezing on mesenchymal stem cells labeled with gold nanoparticles
摘要: Stem cell therapies are a promising treatment for many patients suffering from diseases with poor prognosis. However, clinical translation is inhibited by a lack of in vivo monitoring techniques to track stem cells throughout the course of treatment. Ultrasound-guided photoacoustic imaging of nanoparticle-labeled stem cells may be a solution. To allow photoacoustic tracking, stem cells must be labeled with an optically absorbing contrast agent. Gold nanoparticles are one option due to their cytocompatibility and strong optical absorption in the near-infrared region. However, stem cell labeling can require up to 24-hour incubation with nanoparticles in culture prior to use. Although stem cell monitoring is critically needed, the additional preparation time may not be feasible – it is cost prohibitive and stem cell treatments should be readily available in emergency situations as well as scheduled procedures. To remedy this, stem cells can be labeled prior to freezing and long-term storage. While it is well known that stem cells retain their cellular function after freezing, storage, and thawing, the impact of gold nanoparticles on this process has yet to be investigated. Therefore, we assessed the viability, multipotency, and photoacoustic activity of gold nanosphere-labeled mesenchymal stem cells after freezing, storage, and thawing for one week, one month, or two months and compared to unlabeled, na?ve mesenchymal stem cells which were frozen, stored, and thawed at the same time points. Results indicated no substantial change in viability as assessed by the MTT assay. Differentiation, observed through adipogenesis and osteogenesis, was also comparable to controls. Lastly, strong photoacoustic signals and similar photoacoustic spectral signatures remained. Further studies involving more diverse stem cell types and nanoparticles are required, but our data suggests that function and imaging properties of nanoparticle-labeled stem cells are maintained after freezing and storage, which improves translation of stem cell monitoring techniques by simplifying integration with clinical protocols.
关键词: photoacoustic imaging,cell tracking,freezing,Gold nanospheres,ultrasound,stem cells
更新于2025-09-16 10:30:52
-
Photoacoustic Imaging Quantifies Drug Release from Nanocarriers via Redox Chemistry of Dye‐Labeled Cargo
摘要: There have been remarkable advances in imaging drug nanocarriers, but there are few real-time imaging strategies to determine if the cargo has been released from the carrier. This is important because the pharmacokinetics and pharmacodynamics of the carrier can often be dramatically decoupled from that of the cargo. Thus, new tools are clearly needed to image the timing and quantity of drug release from nanocarriers. Here, we describe a simple strategy for photoacoustic monitoring of drug release based on the redox chemistry of methylene blue, which offers predictable redox chemistry: It can transition from the oxidized state with a bright blue color and robust photoacoustic signal to the reduced state that the transparent with no photoacoustic signal. We locked this drug-dye conjugate into a reduced state inside of a nanoparticle with no photoacoustic signal. As the drug is released from the carrier, the dye is oxidized for quantification with photoacoustic imaging. We first prepared paclitaxel-methylene blue conjugate (PTX-MB) with strong absorbance at 640 nm and photoacoustic intensity proportional to its concentration. This cargo was co-encapsulated in a poly(lactic-co-glycolic acid) nanoparticle with a dithiothreitol reducing agent. The IC50 of PTX-MB-loaded NPs (PTX-MB @ PLGA NPs) was 78 μg mL-1. We then used the redox reaction of PTX-MB to monitor its release from poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). In vitro drug-release in phosphate buffer saline with 20% v/v normal mice serum showed a 670-fold increase in photoacoustic signal. The particles showed an initial burst release (25%) during the first 24 hours. After 24 hours, a sustained release was observed through 120 hours leading to cumulative release of 40.6% of PTX-MB. In vivo drug release study in mice for a duration of 12 hours showed a photoacoustic signal enhancement of up to 649% after 10 hours. We then used this system to treat an orthotopic model of colon cancer via luciferase-positive CT26 cells. Our data showed that tumor burden decreased by 44.7% ± 4.8% when treated with the PTX-MB @ PLGA NPs versus the empty PLGA carrier. This work presents a direct strategy to simultaneously monitor drug release biodistribution.
关键词: Photoacoustic imaging,Paclitaxel,Image-guided drug delivery,PLGA nanoparticles,Drug-release,Cancer therapy,in vivo monitoring
更新于2025-09-16 10:30:52