- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
High-performance PZT-based Stretchable Piezoelectric Nanogenerator
摘要: Stretchable piezoelectric nanogenerators (SPNG) are highly desirable for power supply of flexible electronics. Piezoelectric composite material is the most effective strategy to render piezoelectric nanogenerators stretchable. However, the generated output performance is unsatisfactory due to the low piezoelectric phase proportion. Here we demonstrate a high-performance Pb(Zr0.52Ti0.48)O3 (PZT) -based stretchable piezoelectric nanogenerator (HSPG). The proposed HSPG exhibits excellent output performance with a power density of ~81.25μW/cm3, dozens of times higher than previously reported results. Mixing technique, instead of conventional stirring technology, is used to incorporate PZT particles into solid silicone rubber. The filler distribution homogeneity in matrix is thus remarkably improved, allowing higher filler composition. The PZT proportion in composite can be increased to 92wt% with satisfactory stretchability of 30%. Based on the excellent electrical and mechanical properties, the proposed HSPG can be attached to human body to harvest body kinetic energy with multiple deformation modes. The obtained energy can be used to operate commercial electronics or be stored into a capacitor. Therefore, our HSPG has great potential application in powering flexible electronics.
关键词: energy harvesting,PZT,Piezoelectric composite,stretchable nanogenerator
更新于2025-11-21 11:18:25
-
Exact impact response of multi-layered cement-based piezoelectric composite considering electrode effect
摘要: Multi-layered cement-based piezoelectric composites could enable accurate real-time detection of the concrete structure deformation induced by impact load. An analytical method for quantifying the impact response of the multi-layered cement-based piezoelectric composite is established based on the piezo-elasticity, and a general transfer matrix description for the composite with any number of layers is derived. The motion of the composite is decomposed into natural modes according to its physical significance of vibration modes. The mechanical and electrical solutions are obtained via the mode summation method and the virtual work principle. In order to give a clear demonstration, some numerical simulations are conducted to verify the validity of the theoretical analysis. Moreover, the current analytical method considers the electrode as an extra layer and evaluates the effect of its thickness and material on the performance of the multi-layered cement-based piezoelectric composite. It can be seen that the mathematical model presented in this article provides a rigorous tool for the analysis of the multi-layered cement-based piezoelectric composite and therefore could benefit the design of certain types of smart devices under impact load.
关键词: multi-layered cement-based piezoelectric composite,Exact impact response,piezo-elasticity,electrode effect
更新于2025-09-23 15:21:01
-
On dispersion relations in smart laminated fiber-reinforced composite membranes considering different piezoelectric coupling effects
摘要: Wave propagation characteristics are determined for smart laminated fiber-reinforced composite cylindrical membrane shells with different piezoelectric coupling effects. Wave motion equations are derived using the membrane shell model. By solving an eigenvalue problem, dispersion curves of the wave motion are obtained for different axial and circumferential wave numbers. The effects of piezoelectric coupling, fiber orientation, stacking sequence, and material properties of the host shell on wave behaviors are investigated. The results of this paper can be used for studies on dynamic stability of piezoelectric coupled laminated fiber-reinforced composite shell structures and in design of smart structures with the piezoelectric materials for the applications of damage detection and structural health monitoring.
关键词: dispersion,piezoelectric,Composite,wave propagation,membrane shell
更新于2025-09-19 17:15:36