- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
In-situ Measurements and Thermo-mechanical Simulation of Ti-6Al-4V Laser Solid Forming Processes
摘要: Residual stresses and distortions are two technical obstacles for popularizing the Additive Manufacturing (AM) technology. The evolution of the stresses in AM components during the thermal cycles of the metal depositing process is not yet clear, and more accurate in-situ measurements are necessary to calibrate and validate the numerical tools developed for its simulation. In this work a fully coupled thermo-mechanical analysis to simulate the Laser Solid Forming (LSF) process is carried out. At the same time, an exhaustive experimental campaign is launched to measure the temperature evolution at different locations, as well as the distortions and both the stress and strain fields. The thermal and mechanical responses of single-wall coupons under different process parameters are recorded and compared with the numerical models. Good agreement between the numerical results and the experimental measurements is obtained. Sensitivity analysis demonstrates that the AM process is significantly affected by the laser power and the feeding rate, while poorly influenced by the scanning speed.
关键词: Numerical simulation,Laser Solid Forming (LSF),Thermo-mechanical analysis,Additive manufacturing (AM),In-situ measurements of residual stresses
更新于2025-11-28 14:24:20
-
Experimental Study of Thermomechanical Processes: Laser Welding and Melting of a Powder Bed
摘要: In this study, an experimental approach was developed to analyze and better understand the laser welding and melting of a powder bed process. Different optical diagnostics tools (high-speed camera, infrared camera, pyrometer, etc.) were applied to measure different physical quantities (molten pool morphology, temperature ?eld, residual stresses, and distortions). As a result, measurements during the laser welding process facilitated the building of a database of experimental results (experimental benchmarks). The study of the melting of a powder bed enabled a better understanding of the physics related to the formation and behavior of the molten pool. These results can be used by researchers to improve and validate numerical simulations of these processes.
关键词: optical diagnostics,molten pool,melting of a powder bed,residual stresses,laser welding,temperature field
更新于2025-09-23 15:21:01
-
Taguchi Grey Relationalapproach Foroptimizing Process Parameters of Laser Peeningontitanium Alloy to Induce Enhanced Compressive Stress Based on Finite Element Simulation
摘要: Laser Shock Peening (LSP) turned out the most efficient surface engineering process for advanced materials to induce beneficial deep compressive residual stress which helps in improving mechanical, fatigue properties and surface damage resistance. But, analyzing the non-uniform distribution of residual stresses in the treated sample with XRD is much time taking and costly process. This problem can be resolved with LSP finite element numerical simulation model which is feasible with the realistic experimental process. The FE model allows the user to control the laser parameters in order to achieve the optimal level of all controllable parameters. The present study is intended to analyze and optimize the influence of laser processing parameters assists in inducing the residual compressive stress with minimal surface deformation.A Ti6Al4V material model with Johnson-Cook’s visco-elastic-plastic material behaviour law is prepared for LSP simulation. And Gaussian pressure profile is utilized for uniform loading of the targeted zone for the proposed model. Taguchi Grey Relational Analysis (TGRA) with L27 orthogonal array is applied to LSP simulation, and the results were analyzed with consideration of multiple response measures. It is noted that surface deformation is increased with the rise in a number of laser shots and pressure pulse duration. Maximum compressive residual stresses are falling for higher levels of laser spot diameter, Laser spot overlap and Laser Power density. The correlation is observed between FE simulation and published results. The optimal set of process parameters are obtained for improving the LSP on Ti alloys.
关键词: Grey Relational Analysis (GRA),Taguchi Technique,Laser Shock Peening (LSP),Finite Element Method (FEM),Residual Stresses
更新于2025-09-23 15:21:01
-
Neural networks for trajectory evaluation in direct laser writing
摘要: Material shrinkage commonly occurs in additive manufacturing and compromises the fabrication quality by causing unwanted distortions or residual stresses in fabricated parts. Even though it is known that the resulting deformations and stresses are highly dependent on the writing trajectory, no effective strategy for choosing suitable trajectories has been reported to date. Here, we present a path to achieve this goal in direct laser writing, an additive manufacturing method based on photopolymerization that commonly suffers from strong shrinkage-induced effects. First, we introduce a method for measuring the shrinkage of distinct direct laser written lines. We then introduce a semi-empirical numerical model to capture the interplay of sequentially polymerized material and the resulting macroscopic effects. Finally, we implement an artificial neural network to evaluate given laser trajectories in terms of the resulting part quality. The presented approach proves feasibility of using artificial neural networks to assess the quality of 3D printing trajectories and thereby demonstrates a potential route for reducing the impact of material shrinkage on 3D printed parts.
关键词: Advanced manufacturing,Residual stresses,Artificial neural networks,Direct laser writing
更新于2025-09-23 15:21:01
-
Effect of laser shock peening on high cycle fatigue characteristics of 316LN stainless steel
摘要: The influence of ‘laser shock peening’ (LSP) on fatigue behavior of 316LN stainless steel has been studied at 298 K by conducting fully reversed stress controlled fatigue tests in the range 200–300 MPa. A triangular wave form with a constant frequency of 5 Hz was employed for all the tests conducted below 107 cycles on the virgin and laser shock peened samples. The run out tests at 107 cycles were performed at a frequency of 60 Hz. The studies have clearly revealed that the fatigue life is dependent on surface condition of the material and stress amplitude employed. A comparison is made of cyclic stress-strain hysteresis loops and fatigue lives between virgin and peened material. The peened material showed better fatigue strength and life at low stress amplitudes pertaining to high cycle fatigue regime, and exhibited lower density of surface microcracks. The improved fatigue resistance of peened material is attributed to the presence of residual compressive stresses to a depth of ~100 μm from the surface. The beneficial effect of compressive stresses is perceived both in the reduction in number density of Stage-I microcracks and retarded stage-II crack growth in the initial stages (that revealed striations with lesser spacing compared to un-peened samples).
关键词: Laser shock peening,Stainless steel,High cycle fatigue,Compressive residual stresses
更新于2025-09-19 17:13:59
-
Thermal Relaxation Features of Residual Stresses Arising upon Laser Shock Processing of Heat-Resistant Materials
摘要: In this paper, we study the thermal relaxation features of compressive residual stresses generated during laser-shock wave processing in high-alloyed heat-resistant Iron GH2036 alloy. A finite element modeling of thermal relaxation of the generated compressive residual stresses was performed. The features of the thermal effects on the redistribution of the compressive residual stresses in the temperature range from 200 to 650°C are studied. Based on comparative analysis, the results of the finite element modeling correlated well with the experimental data known in the literature.
关键词: residual stresses,thermal relaxation,finite element modeling,laser-shock wave treatment
更新于2025-09-19 17:13:59
-
Strategy of Residual Stress Determination on Selective Laser Melted Al Alloy Using XRD
摘要: Selective laser melting (SLM) is known to generate large and anisotropic residual stresses in the samples. Accurate measurement of residual stresses on SLM-produced samples is essential for understanding the residual stress build-up mechanism during SLM, while a dramatic fluctuation can be observed in the residual stress values reported in the literature. On the basis of studying the influence of surface roughness on residual stress measured using X-ray diffraction (XRD), we propose a procedure coupling XRD technique with pretreatment consisting of mechanical polishing and chemical etching. The results highlight that residual stresses measured using XRD on as-built SLM-produced samples with high surface roughness are significantly lower than those measured on samples with finished surface, which is due to the stress relaxation on the spiked surface of as-built samples. Surface distribution of residual stresses and the effect of scanning strategy were systematically investigated for SLM-produced AlSi10Mg samples. Microstructural morphology was observed at the interface between sample and building platform and was linked to the surface distribution of residual stresses. This procedure can help us accurately measure the residual stresses in SLM-produced samples and thus better understand its build-up mechanism during the SLM process.
关键词: X-ray diffraction (XRD),residual stresses,AlSi10Mg,selective laser melting,surface roughness
更新于2025-09-19 17:13:59
-
Effect of Inter-Layer Dwell Time on Distortion and Residual Stresses of Laser Metal Deposited Wall
摘要: The laser metal deposition is an advanced manufacturing technology enabling the production of large-sized parts and partially or completely elimination of machining and welding. The process is characterised by a non-uniform local heating of the buildup leading to a stress distribution, which may exceed the yield strength of the material and leads to loss of dimensional accuracy. The interlayer dwell time has a strong influence on the temperature field. The effect of the interlayer dwell time on the distortion and the stress distribution during laser metal deposition of a single-pass wall on the edge of 2 mm thick plate was studied experimentally and numerically. The deposited material was IN625 and the substrate material was AISI 316. A decrease of the residual displacement, due to a uniform shrinkage after the deposition of the last layer and a lower level of the residual compressive longitudinal plastic strain, has been observed in the studies without a dwell time. The peak increment of the free edge displacement corresponds to the first layer and hence the subsequent layers will be deposited on the already plastically deformed buildup. The tensile residual longitudinal stress near the top of the buildup and transverse stress near the edges of the buildup is higher than yield strength in the studies with dwell time.
关键词: Temperature field,Laser metal deposition,Residual stresses,Simulation,Distortion
更新于2025-09-16 10:30:52
-
Improved stress-cracking resistance of laser welded amorphous thermoplastics by means of adapted wavelengths
摘要: Laser transmission welding is widely used for the creation of strong, hermetic and optically appealing joints between thermoplastic parts. Amorphous polymers like polycarbonate and poly(methyl methacrylate) offer excellent optical properties, making them suitable for this joining technique and especially attractive for lighting and decorative applications, for example in the automotive industry. However, the rapid and non-uniform temperature changes during the process can lead to residual stresses, which can impair weld strength and result in part failure due to environmental stress cracking. In this work it was found, that the application of 2 μm laser radiation can lead to reduced stress-cracking-susceptibility compared to conventional laser transmission welding with wavelengths of ~1 μm.
关键词: amorphous polymers,residual stresses,environmental stress cracking,laser transmission welding
更新于2025-09-16 10:30:52
-
Effect of Process Parameters on Residual Stresses, Distortions, and Porosity in Selective Laser Melting of Maraging Steel 300
摘要: Selective laser melting (SLM) is one of the most well-known additive manufacturing methods available for the fabrication of functional parts from metal powders. Although SLM is now an established metal additive manufacturing technique, its widespread application in industry is still hindered by inherent phenomena, one of which is high residual stresses. Some of the e?ects of residual stresses–such as warping and thermal stress-related cracking–cannot be corrected by post processing. Therefore, establishing input process parameter combinations that result in the least residual stress magnitudes and related distortions and/or cracking is critical. This paper presents the in?uence of laser power, scanning speed, and layer thickness on residual stresses, distortions and achievable density for maraging steel 300 steel parts in order to establish the most optimum input parameter combinations. An analysis of the interdependence between process outcomes shows that high residual stress magnitudes lead to high dimensional distortions in the ?nished parts, whilst porous parts su?er relatively lower residual stresses and associated distortions.
关键词: selective laser melting,distortions,porosity,residual stresses
更新于2025-09-16 10:30:52