- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Copper-Based Volumetric Filler Dedicated for Ag Paste for Depositing the Front Electrodes by Printing on Solar Si Cells
摘要: In this work we present research results on a new paste NPCuXX (where: NP—new paste, CuXX—component, XX—a modifier consisting of Ni and other important elements) based on a copper composite (CuXX) for fabrication of front electrodes in silicon solar cells. The CuXX composite is obtained by chemical processing of copper powder particles and can be used in two ways: as an additive to commercially available paste or as a base material for a new paste, NPCuXX. The CuXX offers the possibility to exchange up to 30 and 50 wt.% Ag into Cu, which significantly decreases the solar cells material costs, and therefore, the overall solar cell price. Emphasis was placed on a proper mass suitable fabrication process of the CuXX component. The NPCuXX paste has been applied both to conventional cell structures such as aluminum-back surface field (Al-BSF) and passivated emitter and rear contact (PERC), and finally solar cells with front electrodes deposited by screen-printing method were fabricated and characterized by current-voltage techniques. This paper reports the first implementation of the copper volumetric material into a screen print paste used in a high-temperature metallization process to fabricate the front contacts of Si solar cells with a highest fill factor of 77.92 and 77.69% for the abovementioned structures, respectively.
关键词: crystalline silicon solar cells,front electrode,copper-based volumetric filler
更新于2025-11-14 17:04:02
-
Unidirectional light scattering by up–down Janus dimers composed of gold nanospheres and silicon nanorods
摘要: In this paper, a time-domain finite-difference (FDTD) method is used to simulate the scattering properties of a Janus dimer that a gold nanosphere is putted on the top of a silicon nanorod. We have demonstrated that the Janus dimer exhibits unidirectional scattering in the whole wavelength region of the sunlight. The unidirectionality of the dimer will improve with the height increase of the silicon nanorod and the gap decrease between two adjacent dimers. In our simulation, the forward-to-backward ratio (F/B) of the Janus dimer calculated dividing forward scattering spectra by backward scattering spectra can achieve the maximum of 20 when the height of silicon nanorod is 300 nm. What is more, we have applied the Janus dimers to amorphous silicon thin-film solar cells as antireflection structures. The reflectivity of the solar cells reduces by 39.40% and the short circuit current density improves by 5.04% than those of the reference. Therefore, the Janus dimers has a great application prospect in photovoltaic devices.
关键词: Amorphous silicon solar cells,Janus dimers,Unidirectional scattering,Electric and magnetic dipole resonance
更新于2025-09-23 15:23:52
-
[IEEE 2017 International Renewable and Sustainable Energy Conference (IRSEC) - Tangier (2017.12.4-2017.12.7)] 2017 International Renewable and Sustainable Energy Conference (IRSEC) - Thermomechanical Investigation of PV Panels Behaviour under NOCT Conditions
摘要: Numerous works on the enhancement of photovoltaic cells’ efficiency can been found in the literature. However, studies related to its durability are limited. For instance, solar radiation induced internal thermal stresses on the structure of photovoltaic (PV) panels has received little attention. These effects cannot be ignored when analyzing the panel’s durability. The internal stresses are difficult to measure since a PV panel is a complex structure composed by different layers, which causes a non-uniform distribution of the temperature inside the panel. In this work, fully coupled thermo-mechanical finite element simulations were performed with the commercial code ABAQUS/CAE to estimate these stresses. Temperature variations and local stress states are estimated throughout the PV panel thickness under nominal operating conditions.
关键词: thermo-mechanical stresses,FE simulation,silicon solar cells,PV panels
更新于2025-09-23 15:22:29
-
Run-to-run control of PECVD systems: Application to a multiscale three-dimensional CFD model of silicon thin film deposition
摘要: Deposition of amorphous silicon thin films via plasma-enhanced chemical vapor deposition (PECVD) and batch-to-batch operation under run-to-run control of the associated chambered reactor are presented in this work using a recently developed multiscale, three-dimensional in space, computational fluid dynamics model. Macroscopic reactor scale behaviors are linked to the microscopic growth of amorphous silicon thin films using a dynamic boundary which is updated at each time step of the transient in-batch simulations. This novel workflow is distributed across 64 parallel computation nodes in order to reduce the significant computational demands of batch-to-batch operation and to allow for the application and evaluation in both radial and azimuthal directions across the wafer of a benchmark, run-to-run based control strategy. Using 10 successive batch deposition cycles, the exponentially weighted moving average algorithm, an industrial standard, is demonstrated to drive all wafer regions to within 1% of the desired thickness set-point in both radial and azimuthal directions across the wafer surface. This is the first demonstration of run-to-run control in reducing azimuthal film nonuniformity. Additionally, thin film uniformity is shown to be improved for poorly optimized PECVD geometries by manipulating the substrate temperature alone, without the need for re-tooling of the equipment.
关键词: thin film silicon solar cells,parallel computing,multiscale modeling,computational fluid dynamics,run-to-run control,thin film growth
更新于2025-09-23 15:21:21
-
Transparent Thin-Film Silicon Solar Cells for Indoor Light Harvesting with Conversion Efficiencies of 36% without Photo-degradation
摘要: With the development of the Internet of Things (IoT), indoor photovoltaics are attracting considerable interest owing to their potential to benefit various IoT-related fields. Therefore, this study investigates the use of transparent hydrogenated amorphous silicon (a-Si:H) solar cells for a broad range of applications, including indoor light harvesting. High gap triple-layers were employed in the a-Si:H solar cells to obtain a high shunt resistance and high short-circuit current, JSC, and open-circuit voltage, VOC, under indoor illumination. Additionally, multiple color-adjusting layers were added without noticeable costs to the conversion efficiency. The maximum efficiency of 36.0% was obtained at a transmittance of 20.44% under white LED light (3,000 lx and 0.92 mW cm-2). Furthermore, the fabricated transparent solar cells show excellent long-term performance, sustaining over 99% of original efficiency under continuous indoor light illumination for 200 h. These cells could accelerate the progress of energy harvesting in IoT applications and facilitate the construction of integrated photovoltaics.
关键词: amorphous silicon solar cells,thin film silicon solar cells,transparent solar cells,indoor photovoltaics,colored solar cells
更新于2025-09-23 15:21:01
-
25.1% Higha??Efficient Monolithic Perovskite Silicon Tandem Solar Cell with a High Band Gap Perovskite Absorber
摘要: Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum band gap, high quantum efficiency, and high stability of the perovskite. Here, we combine a silicon heterojunction bottom cell with a perovskite top cell with an optimum band gap of 1.68 eV in planar p-i-n tandem configuration. Methylammonium-free FA0.75Cs0.25Pb(I0.8Br0.2)3 perovskite with high Cs-content is investigated for improved stability. A 10% molarity increase to 1.1 M of the perovskite precursor solution resulted in ~75 nm thicker absorber layers and 0.7 mA/cm2 higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of ~80% and up to 25.1% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3% (absolute) over five months showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved anti-reflection measures, the high band gap perovskite absorber has the potential for 30% tandem efficiency in the near future.
关键词: interfaces,heterojunction silicon solar cells,perovskite solar cells,thin films,tandem solar cells
更新于2025-09-23 15:21:01
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - On the impact of the metal work function on the recombination in passivating contacts using quasi-steady-state photoluminescence
摘要: Understanding the impact of metal contacts on the recombination within a passivated silicon wafer is crucial for the optimization of various photovoltaic devices such as passivating-contact-based solar cells. To investigate the effect of the metal work function, a selection of metals is applied to aluminum-oxide-passivated n-type crystalline silicon wafers. The saturation current density of the metalized contact (J0m) is determined using the quasi-steady-state photoluminescence method and used as a figure of merit to quantify the effect. We find that J0m increases with the metal work function and that this effect is modulated with the passivation layer thickness. It is more pronounced for thinner passivation layers, which can be attributed to a significant change in the populations of electrons and holes near the silicon surface induced by the metal. Meanwhile thicker layers prevent the charge transfer between the silicon and metal more efficiently leading to insignificant changes in J0m. Based on these findings, we suggest a suitable metal work function range to optimize contact recombination in silicon-based solar cells.
关键词: passivating contacts,surface recombination,saturation current density,quasi-steady-state photoluminescence,work function,Effective lifetime,silicon solar cells
更新于2025-09-23 15:21:01
-
An investigation on determinants of silver paste metallization contact performance on crystalline silicon solar cells
摘要: Since the application of silver (Ag) electrodes is of vital importance to the power output of crystalline silicon (c-Si) solar cells, the factors affecting Ag paste metallization contact performance on Si wafers need to get well understood. Herein, the correlation of Ag/Si contact resistivity and glasses used in Ag paste was studied comprehensively. Here taken for exemplification are three types of glass samples used in Ag paste, because the application of them can result in obvious differences in the contact interface characteristics as well as in the contact resistivity. It was found that the factors affecting contact resistivity include the formation of Ag colloids in the glass phase, the doping concentration in the contacted Si surface, and the fixed charge density and defect states density at the interface. In terms of these issues, the key functions and mechanisms of glasses used in Ag paste are elucidated, and also their effects on electrical performance of cells are discussed in this article.
关键词: glass frit,metallization contact,contact resistivity,crystalline silicon solar cells,silver paste
更新于2025-09-23 15:21:01
-
Dependence of the Optimization of the Front Grid Design in Passivated Emitter and Rear Contact c-Si Solar Cells on the Finger Width and the Aspect Ratio
摘要: In this research, modeling was performed to optimize the grid of the front surface of a solar cell with the passivated emitter and rear contact (PERC) structure by considering the recombination characteristics. The front surface recombination velocity can be reduced in two main ways. The first method is to reduce the emitter Auger recombination by lowering the surface doping concentration during emitter formation, and the second method is to reduce the recombination that occurs at the surface when the electrode and the silicon are in contact, which is called metal-induced recombination and is represented by J0.metal. Because J0.metal increases in proportion to the area of the front electrode, minimizing the finger width and number by optimizing the electrode design is important. Therefore, the front electrode grid should be designed considering the emitter characteristics, J0.metal, according to the number of fingers and the resistance. In this research, the front grid of the solar cell was optimized via modeling using equations to calculate the number of fingers and the resistance. According to the finger width, the number of busbars, the sheet resistance, the aspect ratio, and the number of fingers corresponding to the maximum efficiency were identified. As a result, this modeling enabled us to optimize the front grid to the desired conditions, and we found that an increase in the number of busbars plays an important role in improving the efficiency of solar cells. In addition, the efficiency change with increasing number of busbars can be seen to be affected by the width of the finger and the resolution of the printed finger rather than the aspect ratio.
关键词: Aspect ratio,Finger width,Resistance,Front grid optimization,Crystalline silicon solar cells
更新于2025-09-23 15:21:01
-
Solar Cells || Review on Metallization in Crystalline Silicon Solar Cells
摘要: Solar cell market is led by silicon photovoltaics and holds around 92% of the total market. Silicon solar cell fabrication process involves several critical steps which affects cell efficiency to large extent. This includes surface texturization, diffusion, antireflective coatings, and contact metallization. Among the critical processes, metallization is more significant. By optimizing contact metallization, electrical and optical losses of the solar cells can be reduced or controlled. Conventional and advanced silicon solar cell processes are discussed briefly. Subsequently, different metallization technologies used for front contacts in conventional silicon solar cells such as screen printing and nickel/copper plating are reviewed in detail. Rear metallization is important to improve efficiency in passivated emitter rear contact cells and interdigitated back contact cells. Current models on local Al contact formation in passivated emitter rear contact (PERC) cells are reviewed, and the influence of process parameters on the formation of local Al contacts is discussed. Also, the contact mechanism and the influence of metal contacts in interdigitated back contact (IBC) cells are reviewed briefly. The research highlights on metallization of conventional screen printed solar cells are compared with PERC and IBC cells.
关键词: interdigitated back contact cells,silicon solar cells,passivated emitter rear contact cells,metallization,process flows
更新于2025-09-23 15:19:57