修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • TiO2/MoS2 heterojunctions-decorated carbon fibers with broad-spectrum response as weaveable photocatalyst/photoelectrode

    摘要: The development of efficient and recyclable photocatalysts with wide spectrum response has drawn much attention. Herein, we prepared TiO2/MoS2 heterostructures on carbon fibers (CFs) by a two-step hydrothermal method. CFs/TiO2/MoS2 exhibits a strong and wide absorption spectrum from ultraviolet to near-infrared region (> 1200 nm). Under the irradiation of visible-light, CFs/TiO2/MoS2 could degrade 97.6% Rhodamine B (RhB) after 100 min, 94.2% Acid Orange 7 (AO7) or 93.4% tetracycline hydrochloride (TC) after 60 min, and 88.7% 4-chlorophenol (4-CP) after 180 min. Moreover, CFs/TiO2/MoS2 bundles can be further weaved into a cloth (area: 4 × 4 cm2). CFs/TiO2/MoS2 cloth as a working electrode exhibits significant photocurrent (7.53 × 10?6 A/cm2) and enhanced photoelectrocatalytic efficiency (100% TC) comparing with only photocatalysis (90.7% TC) or electrocatalysis (47% TC). In particular, CFs/TiO2/MoS2 cloth shows excellent stability. Therefore, CFs/TiO2/MoS2 cloth has great potential to be used as flexible and weaveable photocatalyst/photoelectrode for degrading various pollutants.

    关键词: Photoelectrocatalysis,Photocatalyst,Carbon fibers,Visible-light,TiO2/MoS2

    更新于2025-09-23 15:23:52

  • Contact Engineering for Dual-Gate MoS <sub/>2</sub> Transistors Using O <sub/>2</sub> Plasma Exposure

    摘要: The benefits of O2 plasma exposure at the contact regions of dual-gate MoS2 transistors prior to metal deposition for high performance electron contacts is studied and evaluated. Comparisons between devices with and without the exposure demonstrate significant improvements due to the formation of a high-quality contact interface with low electron Schottky barrier (~0.1 eV). Topographical and interfacial characterization are used to study the contact formation on MoS2 from the initial exfoliated surface through the photolithography process and Ti deposition. Fermi level pinning near the conduction band is shown to take place after photoresist development leaves residue on the MoS2 surface. After O2 plasma exposure and subsequent Ti deposition, Ti scavenges oxygen from MoOx and forms TiOx. Electrical characterization results indicate that photoresist residue and other contaminants present after development can significantly impact electrical performance. Without O2 plasma exposure at the contacts, output characteristics of MoS2 FETs demonstrate non-linear, Schottky-like contact behavior compared to the linearity observed for contacts with exposure. O2 plasma allows for the removal of the residue present at the surface of MoS2 without the use of a high temperature anneal. A low conduction band offset and superior carrier injection are engineered by employing the reactive metal Ti as the contact to deliberately form TiO2. Dual-gate MoS2 transistors with O2 plasma exposure at the contacts demonstrate linear output characteristics, lower contact resistance (~20× reduction), and higher field effect mobility (~15× increase) compared to those without the treatment. In addition, these results indicate that device fabrication process induced effects cannot be ignored during the formation of contacts on MoS2 and other 2D materials.

    关键词: TiO2,MoS2,contact resistance,O2 plasma,photoresist residue,MOSFETs,contacts

    更新于2025-09-23 15:22:29

  • Visible Light-Driven Self-Powered Device Based on a Straddling Nano-Heterojunction and Bio-Application for the Quantitation of Exosomal RNA

    摘要: This paper reports the design and fabrication of a self-powered biosensing device based on TiO2 nanosilks (NSs)@MoS2 quantum dots (QDs) and demonstrates a bio-application for the quantitative detection of exosomal RNA (Homo sapiens HOXA distal transcript antisense RNA (HOTTIP)). This self-powered device features enhanced power output, compared to TiO2 NSs alone. This is attributed to the formation of a heterojunction structure with suitable band offset derived from the hybridization between TiO2 NSs and MoS2 QDs, i.e., the straddling (Type I) band alignment. The sensitization effect and excellent visible light absorption provided by MoS2 QDs can prolong interfacial carrier lifetime and improve energy conversion efficiency. This self-powered biosensing device has been successfully applied in quantitative HOTTIP detection through effective hybridization between a capture probe and HOTTIP. The successful capture of HOTTIP leads to a sequential decrease in power output, which is utilized for ultrasensitive quantitative HOTTIP detection, with a linear relationship of power output change vs. logarithm of HOTTIP concentration ranging from 5 fg/mL to 50000 ng/mL and a detection limit as low as 5 fg/mL. This TiO2 NSs@MoS2 QDs-based nanomaterial has excellent potential for a superior self-powered device characterized by economical and portable self-powered biosensing. Moreover, this self-powered, visible light-driven device shows promising applications for cancer bio-marker quantitative detection.

    关键词: self-power,gastric cancer,heterojuncture,TiO2@MoS2,exosome,homo sapiens HOXA distal transcript antisense RNA(HOTTIP)

    更新于2025-09-19 17:15:36

  • Hydrothermal processed heterogeneous MoS2 assisted charge transport in dye sensitized solar cells

    摘要: Photovoltaic performance in dye sensitized solar cells (DSSCs) was improved by incorporating hydrothermal processed molybdenum disulfide (MoS2) into the bulk of titanium dioxide (TiO2) nanoparticle film. MoS2 exhibits a heterogeneous morphology comprising randomly distributed clustered nanoparticles and one dimensional nano-needles. The heterogeneous MoS2 was examined by X-ray photoelectron spectroscopy to study Mo 3d and S 2p peaks. Transmission electron microscopic studies on the heterogeneous MoS2 assert the presence of multilayers which further confirmed by UV–visible optical absorption spectroscopy showed absence of band-edge excitonic peaks at 612 nm and 674 nm. DSSCs show 17% enhancement in performance for 0.09 wt% of heterogeneous MoS2 incorporated TiO2 nanoparticle film compared to reference DSSC fabricated using only TiO2. Further changes in performance was examined by varying the concentration of MoS2 in TiO2 and observed that there is an optimum value to facilitate photo-generated charge transport kinetics in TiO2. The heterogeneous nature of MoS2 effectively acquired photo-electrons from TiO2 due to the presence of conduction band edge few meV below than that of in TiO2 and helps improving the performance.

    关键词: TiO2,MoS2,Charge transport,Hydrothermal processing,Dye sensitized solar cells

    更新于2025-09-12 10:27:22