修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

16 条数据
?? 中文(中国)
  • TiO2-Coated Core-Shell Ag Nanowire Networks for Robust and Washable Flexible Transparent Electrodes

    摘要: Silver nanowires (AgNWs) are the most promising materials to fabricate flexible transparent electrodes (FTEs) used in next-generation electronics. However, there are several bottlenecks for AgNWs-based FTEs to achieve large-scale applications, which are the thermal instability and rough surface topography of AgNWs and the poor interfacial adhesion between AgNWs and used substrate. To simultaneously address these aforementioned issues, a robust and washable FTE is prepared based on AgNW@TiO2 core-shell network embedding in polyimide (PI) substrate through a facile and scalable solution-based process. After treating with TiO2 sol, an ultra-thin, conformal, and continuous TiO2 shell is coated on AgNWs, which can effectively suppress the atomic surface diffusion. In comparison with pristine AgNW network that breaks into nanorods and nanospheres at 250 °C for 10 min, the AgNW@TiO2 core-shell network is stable at 300 °C, and its resistance just increases by a factor of 11 after annealing at 400 °C for 1 h. Furthermore, the TiO2 shell simultaneously increases the electrical and optical properties of AgNW network. After flowing PI precursors, drying, and thermally curing, the AgNW@TiO2 core-shell network is embedded on the surface of PI substrate with surface roughness of 1.9 nm. In addition to high thermal stability, the conductivity of the AgNWs@TiO2-PI composite FTE remains almost unchanged after repeated 3M tape peeling off cycles and mechanical bending cycles. It is also demonstrated that the AgNWs@TiO2-PI composite FTE is washable, and the relative change in resistance (?R/R0) is ~12% after 100 washing cycles in which a variety of stress situations occurring in combination.

    关键词: flexible transparent electrodes,peeling off and mechanical stabilities,TiO2 sol,silver nanowire@TiO2 core-shell network,thermal and washing stabilities

    更新于2025-11-14 14:32:36

  • Enhanced electrical conductivity of transparent electrode using metal microfiber networks for gridless thin-film solar cells

    摘要: Improving the optical transmittance and electrical conductivity in transparent conductors (TC) has been a critical issue for decades due to their numerous applications. In this paper, we suggest an approach to produce extremely conductive TC material from electroplated Ni microfiber networks (NiMFs) in order to achieve highly efficient and aesthetically superior thin-film solar cells and modules. The high cross-sectional aspect ratio of NiMFs significantly enhanced their electrical conductivity and optical transmittance simultaneously. The TC structure employing NiMFs was a successful substitute for conventional patterned grids in Cu(In,Ga)Se2 thin-film solar cells because it reduced the series resistance, which is especially advantageous for large-area cells. The NiMF-induced transmittance loss was compensated for by the formation of a light diffusion layer on the NiMF. We propose that the excellent performance of NiMF TC materials enables the elimination or significant reduction of the grids in thin-film solar cells and modules.

    关键词: Ni fibers,Gridless,Thin-film solar cells,Transparent electrodes

    更新于2025-10-22 19:40:53

  • Advanced Graphene-Based Transparent Conductive Electrodes for Photovoltaic Applications

    摘要: New architectures of transparent conductive electrodes (TCEs) incorporating graphene monolayers in different configurations have been explored with the aim to improve the performance of silicon-heterojunction (SHJ) cell front transparent contacts. In SHJ technology, front electrodes play an important additional role as anti-reflectance (AR) coatings. In this work, different transparent-conductive-oxide (TCO) thin films have been combined with graphene monolayers in different configurations, yielding advanced transparent electrodes specifically designed to minimize surface reflection over a wide range of wavelengths and angles of incidence and to improve electrical performance. A preliminary analysis reveals a strong dependence of the optoelectronic properties of the TCEs on (i) the order in which the different thin films are deposited or the graphene is transferred and (ii) the specific TCO material used. The results shows a clear electrical improvement when three graphene monolayers are placed on top on 80-nm-thick ITO thin film. This optimum TCE presents sheet resistances as low as 55 ?/sq and an average conductance as high as 13.12 mS. In addition, the spectral reflectance of this TCE also shows an important reduction in its weighted reflectance value of 2–3%. Hence, the work undergone so far clearly suggests the possibility to noticeably improve transparent electrodes with this approach and therefore to further enhance silicon-heterojunction cell performance. These results achieved so far clearly open the possibility to noticeably improve TCEs and therefore to further enhance SHJ contact-technology performance.

    关键词: transparent electrodes,silicon heterojunction solar devices,graphene

    更新于2025-10-22 19:40:53

  • Highly Transparent, Flexible Conductors and Heaters Based on Metal Nanomesh Structures Manufactured Using an All Water-Based Solution Process

    摘要: Metal mesh is a promising material for flexible transparent conducting electrodes due to its outstanding physical and electrical properties. The excellent control of the sheet resistance and transmittance provided by the metal mesh electrodes is a great advantage for microelectronic applications. Thus, over the past decade, many studies have been performed in order to realize high-performance metal mesh; however, the lack of cost-effective fabrication processes and the weak adhesion between the metal mesh and substrate have hindered its widespread adoption for flexible optoelectronic applications. In this study, a new approach for fabricating robust silver mesh without using hazardous organic solvents is achieved by combining colloidal deposition and silver enhancement steps. The adhesion of the metal mesh was greatly improved by introducing an intermediate adhesion layer. Various patterns relevant to optoelectronic applications were fabricated with a minimum feature size of 700 nm, resulting in high optical transmittance of 97.7% and also high conductivity (71.6 Ω sq-1) of the metal mesh. In addition, we demonstrated an effective transparent heater using the silver mesh with excellent exothermic behavior, which heated up to 245 °C with 7 V applied voltage.

    关键词: solution process,flexible electrodes,transparent heaters,metal nanomesh,transparent electrodes

    更新于2025-09-23 15:23:52

  • Surface-functionalized silver nanowires on chitosan biopolymers for highly robust and stretchable transparent conducting films

    摘要: We develop highly robust and stretchable conductive transparent electrodes based on silver nanowires (AgNWs) deposited on functionalized chitosan biopolymer substrates. 11-aminoundecanoic acid is introduced as a surface modifier for enhancing the chemical bond. The chemically functionalized AgNW films achieve a low sheet resistance of 12.2 ohm/sq with a high transmittance of 88.9%. In addition, stretchable alternating current-driven electroluminescent devices and stretchable transparent heaters have been fabricated with AgNW/chitosan thin-films which can be cut, stretched, bent, and twisted without performance degradation. With this approach, stretchable electronics prepared on bio-compatible substrates can be easily applied to curved surfaces or human skins.

    关键词: wearable electronics,chitosan,silver nanowires,Transparent electrodes,stretchable electronics

    更新于2025-09-23 15:22:29

  • Light and pressure sensors based on PVDF with sprayed and transparent electrodes for self-powered wireless sensor nodes

    摘要: In this work, we report on the fabrication of light and pressure sensors based on the piezo-and pyro material polyvinylidene fluoride (PVDF). In addition to the operation as sensors, the presented devices are characterized as energy harvesters. To form an electrical connection to the 39 μm thick PVDF foil, solution-based and transparent electrode (TE) materials such as silver nanowires (AgNWs) and poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) are utilized and compared with commercial aluminum electrodes on polymer substrate. We show that the performance with regard to sensitivity and generated output power of the TE-PVDF devices outperforms the one for the aluminum foil devices. For the piezo- and pyroelectric effect, a pressure and light sensitivity of 3.6 mV/Pa and 42 V cm2/W, respectively, are measured. The maximum RMS power for the piezo- and pyro effect yield to 1 μW and 0.42 μW, respectively, for an active PVDF area of 8 cm2. At the end of this contribution, we show that this power suffices to drive an energy autarkic wireless sensor node (WSN) that is capable of measuring and transmitting an analog sensor signal using ultra-low power components. This application contributes substantially to the notion of the internet of things (IoT) since paramount aspects such as wireless technology, embedded electronics, and environmental sensor data together with an ultra-low power management are addressed.

    关键词: wireless sensor nodes,PEDOT:PSS,WSN,Internet of Things,IoT,spray deposition,energy harvesting,silver nanowires,transparent electrodes

    更新于2025-09-23 15:21:21

  • Flexible Electronics: Stretchable Electrodes and Their Future

    摘要: Flexible electronics, as an emerging and exciting research field, have brought great interest to the issue of how to make flexible electronic materials that offer both durability and high performance at strained states. With the advent of on-body wearable and implantable electronics, as well as increasing demands for human-friendly intelligent soft robots, enormous effort is being expended on highly flexible functional materials, especially stretchable electrodes, by both the academic and industrial communities. Among different deformation modes, stretchability is the most demanding and challenging. This review focuses on the latest advances in stretchable transparent electrodes based on a new design strategy known as kirigami (the art of paper cutting) and investigates the recent progress on novel applications, including skin-like electronics, implantable biodegradable devices, and bioinspired soft robotics. By comparing the optoelectrical and mechanical properties of different electrode materials, some of the most important outcomes with comments on their merits and demerits are raised. Key design considerations in terms of geometries, substrates, and adhesion are also discussed, offering insights into the universal strategies for engineering stretchable electrodes regardless of the material. It is suggested that highly stretchable and biocompatible electrodes will greatly boost the development of next-generation intelligent life-like electronics.

    关键词: kirigami,e-skins,soft robotics,stretchable transparent electrodes,flexible electronics

    更新于2025-09-23 15:21:01

  • Enhanced Emission of Deep Ultraviolet Light-Emitting Diodes Through Using Work Function Tunable Cu Nanowires as Top Transparent Electrode

    摘要: Deep ultraviolet light-emitting diodes (DUV LEDs) (< 280 nm) have been important light sources for broad applications in, e.g., sterilization, purification, high-density storage and etc. However, the lack of excellent transparent electrodes in DUV region remains a challenging issue. Here, we demonstrate an architectural engineering scheme to flexibly tune the work function of Cu@shell nanowires (NWs) as top transparent electrodes in DUV LEDs. By fast encapsulation of shell metals on Cu NWs and shift of electron binding energy, the electronic work function could be widely tailored down to 4.37 eV and up to 5.73 eV. It is revealed that the high work function of Cu@Ni and Cu@Pt NWs could overcome the interfacial barrier to p-AlGaN and achieve direct ohmic contact with high transparency (91%) in 200 ~ 400 nm. Completely transparent DUV LED chips are fabricated and successfully lighted with sharp top emission (wall-plug efficiency reaches 3 %) under a turn-on voltage of 6.4 V. This architectural strategy is of importance in providing highly transparent ohmic electrodes for optoelectronic devices in broad wavelength regions.

    关键词: copper nanowires,transparent electrodes,light-emitting diodes,Deep ultraviolet,work function

    更新于2025-09-19 17:13:59

  • Bio-inspired transparent MXene electrodes for flexible UV photodetectors

    摘要: As a sort of rising two dimensional materials, MXenes have huge potential for they not only possess superb electrical conductivity and high hydrophilicity, but also enjoy mechanical strength and flexibility. Yet their applications to optoelectronics as electrodes are limited owing to the tradeoff between high transmittance and low conductive resistance, as a low resistance needs more conductive materials, reducing transmission by producing a larger surface coverage. To tackle this bottleneck, here a novel bio-inspired strategy is reported to acquire transparent flexible electrodes with both high transparency and high conductivity which outperform other transparent electrodes. It simultaneously exhibits reliable flexibility during a series of mechanical tests. All these properties of MXene electrodes result from well-designed hierarchical leaf vein network structure and strong adhesion between MXene and urea-treated substrates. In applications, a free-standing semi-transparent UV photodetector is constructed using the MXene electrodes, showing high-performance UV detection as well as superb flexibility and stability. The method provides a new route for MXene based optoelectronics.

    关键词: bio-inspired design,MXene,UV photodetection,transparent electrodes,flexible photodetectors

    更新于2025-09-19 17:13:59

  • Malleability and Pliability of Silka??Derived Electrodes for Efficient Deformable Perovskite Solar Cells

    摘要: For the fabrication of deformable electronic devices, electrodes that are robust against repeated bending, twisting, stretching, folding, reversible plasticizing, and that maintain electrical conductivity, and so on, are required. Malleable and pliable silk-derived electrodes are fabricated to enable the shape deformation of perovskite solar cells. Moisture-driven silk-derived electrodes show reversible plasticization with malleability and pliability, realizing diverse deformation from simple operations (including bending, folding, stretching, etc.) to complicated structures (including flower, bowknot, and paper crane). It is worth noting that the silk-derived electrodes maintain electrical conductivity (15.8 Ω sq?1) compared to their initial value (15 Ω sq?1) even after suffering from reversible mechanical plasticization of complicated structures. Deformable perovskite solar cells are fabricated with the silk-derived electrodes and achieve a power conversion efficiency of 10.40%. The devices maintain 92% of the initial efficiency after 1000 bends at a curvature radius of 2.5 mm. The power does not decline at 50% strain and keeps more than 60% of the initial value after stretching for 50 cycles. Malleability and pliability of silk-derived electrodes benefit the realization of stretchable perovskite solar cells and deformable electronic devices.

    关键词: silk,transparent electrodes,deformable electronics,flexible perovskite solar cells

    更新于2025-09-16 10:30:52