- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Strategies towards rational design of gold(iii) complexes for high-performance organic light-emitting devices
摘要: Gold(iii) complexes are attractive candidates as phosphorescent dopants in organic light-emitting devices for high-luminance full-colour displays. However, no data on the stability of such devices have been reported to date. Through rational molecular design and synthesis, we have successfully generated a new class of cyclometalated gold(iii) C^C^N complexes with tunable emission colours spanning from sky-blue to red. These complexes exhibit high photoluminescence quantum yields of up to 80% in solid-state thin films, excellent solubility and high thermal stability. Solution-processable and vacuum-deposited organic light-emitting devices based on these complexes operate with external quantum efficiencies of up to 11.9% and 21.6%, respectively, and operational half-lifetimes of up to 83,000 h at 100 cd m?2.
关键词: operational stability,phosphorescent dopants,organic light-emitting devices,cyclometalated,gold(iii) complexes,C^C^N complexes
更新于2025-11-19 16:56:35
-
Blue-green-emitting cationic iridium complexes with oxadiazole-type counter-anions and their use for highly efficient solution-processed organic light-emitting diodes
摘要: Cationic iridium complexes are promising phosphorescent dopants for solution-processed organic light-emitting diodes (OLEDs) and counter-anion control has emerged as a facile approach to tailor their properties for high-performance devices. A series of oxadiazole-type anions, 3-(5-phenyl-1,3,4-oxadiazol-2-yl)benzenesulfonate (OXD-SO3?), 3-(5-(4-(tert-butyl)phenyl)-1,3,4-oxadiazol-2-yl)benzenesulfonate (tBuOXD-SO3?) and (3-(5-(4-(tert-butyl)phenyl)-1,3,4-oxadiazol-2-yl)phenyl)trifluoroborate (tBuOXD-BF3?), have been prepared as counter-anions for blue-green-emitting cationic iridium complexes. The photophysical and electrochemical properties of the anions and the complexes have been comprehensively characterized. The anions do not affect the emission properties of the phosphorescent cation and efficiently transfer their energy to the cations in films. Solution-processed, double-layer OLEDs using the complexes as dopants have shown much higher (~1.4) efficiencies than the device using the reference complex with a PF6? counter-anion, owing to the improvement of carrier transport/recombination balance by the electron-trapping effect of oxadiazole-type anions. In particular, the blue-green device using the complex with the OXD-SO3? counter-anion affords a peak current efficiency of 37.6 cd A?1 and a peak external quantum efficiency (EQE) of 15.2%, which is the highest for solution-processed OLEDs based on cationic iridium complexes reported so far.
关键词: solution-processed OLEDs,oxadiazole-type counter-anions,phosphorescent dopants,cationic iridium complexes,high-performance devices
更新于2025-11-14 15:23:50
-
Preferential Positioning, Stability, and Segregation of Dopants in Hexagonal Si Nanowires
摘要: We studied the physics of common p- and n-type dopants in hexagonal-diamond Si –a Si polymorph that can be synthesized in nanowire geometry without the need of extreme pressure conditions– by means of first-principles electronic structure calculations and compared our results with those for the well-known case of cubic-diamond nanowires. We showed that i) as observed in recent experiments, at larger diameters (beyond the quantum confinement regime) p-type dopants prefer the hexagonal-diamond phase with respect to the cubic one as a consequence of the stronger degree of three-fold coordination of the former, while n-type dopants are at a first approximation indifferent to the polytype of the host lattice; ii) in ultra-thin nanowires, because of the lower symmetry with respect to bulk systems and the greater freedom of structural relaxation, the order is reversed and both types of dopant slightly favor substitution at cubic lattice sites; iii) the difference in formation energies leads, particularly in thicker nanowires, to larger concentration differences in different polytypes, which can be relevant for cubic-hexagonal homojunctions; iv) ultra-small diameters exhibit, regardless of the crystal phase, a pronounced surface segregation tendency for p-type dopants. Overall these findings shed light on the role of crystal phase in the doping mechanism at the nanoscale and could have a great potential in view of the recent experimental works on group IV nanowires polytypes.
关键词: density functional theory,Nanowires,formation energy,dopants,2H-Si,hexagonal diamond silicon
更新于2025-09-23 15:23:52
-
[IEEE 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) - Austin, TX, USA (2018.9.24-2018.9.26)] 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) - The Impact of Dopant Diffusion on Random Dopant Fluctuation in Si Nanowire FETs: A Quantum Transport Study
摘要: In this work, we perform statistical quantum transport simulations with 3×3 nm2 Si nanowire (NW) field-effect transistors (FETs) to investigate the impact of dopant diffusion on random dopant fluctuation. First, we use an effective mass Hamiltonian for the transport where the confinement and transport effective masses are extracted from the tight-binding band structure calculations. The dopant diffusion along the transport direction from the source/drain regions to the channel region is modeled by the Gaussian doping profile. To generate random discrete dopants, we adopt a rejection scheme considering the 3-dimensional atomic arrangement of the NW structures. Our statistical simulation results show that the diffused dopants into the channel region cause large variability problems in Si NW FETs.
关键词: non-equilibrium Green's function,tight-binding,dopant diffusion,random discrete dopants,silicon nanowire
更新于2025-09-23 15:22:29
-
Enhanced Photocatalytic Activity of Titania by Co-Doping with Mo and W
摘要: Various W and Mo co-doped titanium dioxide (TiO2) materials were obtained through the EISA (Evaporation-Induced Self-Assembly) method and then tested as photocatalysts in the degradation of 4-chlorophenol. The synthesized materials were characterized by thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy (RS), N2 physisorption, UV-vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results showed that the W-Mo-TiO2 catalysts have a high surface area of about 191 m2/g, and the presence of an anatase crystalline phase. The co-doped materials exhibited smaller crystallite sizes than those with one dopant, since the crystallinity is inhibited by the presence of both species. In addition, tungsten and molybdenum dopants are distributed and are incorporated into the anatase structure of TiO2, due to changes in red parameters and lattice expansion. Under our experimental conditions, the co-doped TiO2 catalyst presented 46% more 4-chlorophenol degradation than Degussa P25. The incorporation of two dopant cations in titania improved its photocatalytic performance, which was attributed to a cooperative effect by decreasing the recombination of photogenerated charges, high radiation absorption capacity, high surface areas, and low crystallinity. When TiO2 is co-doped with the same amount of both cations (1 wt.%), the highest degradation and mineralization (97% and 74%, respectively) is achieved. Quinones were the main intermediates in the 4-chlorophenol oxidation by W-Mo-TiO2 and 1,2,4-benzenetriol was incompletely degraded.
关键词: W-Mo dopants,photocatalytic activity,nanoparticles,titanium dioxide
更新于2025-09-23 15:22:29
-
Energy Transfer Networks Within Upconverting Nanoparticles Are Complex Systems With Collective, Robust, and History-Dependent Dynamics
摘要: Applications of photon upconverting nanoparticles (UCNPs) in biological imaging and solar energy conversion demand that their anti-Stokes luminescence be both tunable and efficient. Rational design of more efficient UCNPs requires an understanding of energy transfer (ET) between their lanthanide dopants – dynamics that are typically characterized by measuring luminescence lifetimes. Existing knowledge, however, cannot explain basic observations in lifetime experiments such as their dependence on excitation power, significantly limiting the generality and reliability of lifetime measurements. Here, we elucidate the origins of the ET dynamics and luminescence lifetimes of Yb3+,Er3+-codoped NaYF4 UCNPs using time-resolved luminescence and novel applications of rate equations and stochastic simulations. Experiments and calculations consistently show that, at high concentrations of Er3+, the luminescence lifetimes of UCNPs decrease as much as 6-fold when excitation power densities are increased over six orders of magnitude. Since power-dependent lifetimes cannot be explained by intrinsic relaxation rates of individual transitions, we analyze lifetime data by treating each UCNP as a complex ET network. We find that UCNP ET networks exhibit four distinguishing characteristics of complex systems: collectivity, nonlinear feedback, robustness, and history dependence. We conclude that power-dependent lifetimes are the consequence of thousands of minor relaxation pathways that act collectively to depopulate and repopulate Er3+ emitting levels. These ET pathways are dependent on past excitation power because they originate from excited donors and excited acceptors; however, each transition has an unexpectedly small impact on lifetimes due to negative feedback in the network. This robustness is determined by systematically 'knocking out,' or disabling, ET transitions in kinetic models. Our classification of UCNP ET networks as complex systems explains why UCNP luminescence lifetimes do not match the intrinsic lifetimes of emitting states. In the future, UCNP networks may be engineered to rival the complexity of biological networks that pattern features with unmatched precision.
关键词: complex systems,energy transfer,upconverting nanoparticles,lanthanide dopants,power dependence,luminescence lifetimes
更新于2025-09-19 17:15:36
-
First-principles calculations on effects of Al and Ga dopants on atomic and electronic structures of amorphous Ge <sub/>2</sub> Sb <sub/>2</sub> Te <sub/>5</sub>
摘要: Effects of post-transition metal dopants M (M = Al, Zn, and Ga) on structural and electronic properties of amorphous Ge2Sb2Te5 (a-GST) are investigated through first-principles calculations based on the density functional theory. The doped a-GST is generated through the melt-quench procedure using molecular dynamics simulations. It is found that the three dopants behave similarly in a-GST, and they are mostly coordinated by Te atoms in tetrahedral geometry, which is similar to those in crystalline MxTey. This is in contrast with crystalline GST wherein the most stable position of dopant M is the octahedral vacancy site. The number of wrong bonds such as Ge–Ge, Ge–Sb, or Sb–Sb increases as dopant atoms predominantly bond with Te atoms. The number of 4-fold ring structures, especially ABAB-type, decreases significantly, explaining the enhanced thermal stability of doped a-GST in the experiment. The bandgap estimated from density of states and the optical gap obtained from Tauc plot increase upon doping, which is also in good agreement with the experiment. By successfully relating the experimental doping effects and changes in the atomic structure, we believe that the present work can serve as a key to offer better retention and lower power consumption in phase-change memory.
关键词: amorphous Ge2Sb2Te5,electronic structures,first-principles calculations,atomic structures,Al and Ga dopants
更新于2025-09-19 17:15:36
-
Dodecaborane-Based Dopants Designed to Shield Anion Electrostatics Lead to Increased Carrier Mobility in a Doped Conjugated Polymer
摘要: One of the most effective ways to tune the electronic properties of conjugated polymers is to dope them with small-molecule oxidizing agents, creating holes on the polymer and molecular anions. Undesirably, strong electrostatic attraction from the anions of most dopants localizes the holes created on the polymer, reducing their mobility. Here, a new strategy utilizing a substituted boron cluster as a molecular dopant for conjugated polymers is employed. By designing the cluster to have a high redox potential and steric protection of the core-localized electron density, highly delocalized polarons with mobilities equivalent to films doped with no anions present are obtained. AC Hall effect measurements show that P3HT films doped with these boron clusters have conductivities and polaron mobilities roughly an order of magnitude higher than films doped with F4TCNQ, even though the boron-cluster-doped films have poor crystallinity. Moreover, the number of free carriers approximately matches the number of boron clusters, yielding a doping efficiency of ≈100%. These results suggest that shielding the polaron from the anion is a critically important aspect for producing high carrier mobility, and that the high polymer crystallinity required with dopants such as F4TCNQ is primarily to keep the counterions far from the polymer backbone.
关键词: mobility,molecular dopants,Coulomb screening,semiconducting polymers,dodecaboranes
更新于2025-09-19 17:15:36
-
Interaction between Bi Dopants and Intrinsic Defects in LiNbO <sub/>3</sub> from Local and Hybrid Density Functional Theory Calculations
摘要: The interactions between Bi dopants including Bi-substituting Li (BiLi) and Bi-substituting Nb (BiNb) and the intrinsic antisite defects (NbLi) and Li vacancies (VLi) in LiNbO3 are investigated using local and hybrid density functional theories. Three charge-compensated defect clusters, BiLi4+ + NbLi4+ + 8VLi-, BiLi4+ + 4VLi-, and BiLi0 + 4VLi- + BiNb4+, are modeled in this work to investigate the effects of the Bi concentration. The most stable cluster configurations, the Bi-doping stability in the clusters, and the electronic state interaction between Bi and intrinsic defects have been studied in detail. It is found that BiLi4+ has a stronger electron-capturing ability than NbLi4+ in Bi-doped congruent LiNbO3. The BiLi-doping-induced local lattice distortion and the electron-trapping behavior remain unchanged with increasing Bi-doping concentration. However, the position of the Bi defect states in the band gap is found to be shifted in congruent LiNbO3. This is mainly attributed to the large lattice relaxation induced by the large number of Li vacancies instead of the ionic level redistribution caused by the direct interaction between Bi and intrinsic defects.
关键词: LiNbO3,Bi dopants,lattice distortion,defect clusters,intrinsic defects,density functional theory,electron trapping
更新于2025-09-19 17:15:36
-
Role of metallic dopants on the properties of copper (1) iodide nanopod-like structures
摘要: The addition of impurities as dopants to any material affects the properties of the material where the dopant modulates the optical and structural properties of the material. Copper (1) iodide films which were successfully doped with Al, Pb and Zn (as metallic dopants) were synthesized by the successive ionic layer adsorption and reaction (SILAR) technique while the morphological, structural, optical and electrochemical properties were investigated using the scanning electron microscope (SEM), X-ray diffraction (XRD), UV–Vis spectrophotometer and potentiostat respectively. The SEM image revealed a nanopod-like structure for the deposited CuI films while the XRD results confirmed the crystalline nature of the films with a face centered cubic structure. The optical results showed a progressive decrease of the absorbance values at increasing wavelengths while the optical bandgap energy of the undoped CuI film reduced from 2.47eV to 1.90eV, 1.75eV and 1.8eV for the Al-doped, Pb-doped and Zn-doped CuI films respectively. The undopedCuI film also showed a higher extinction coefficient value than the metallic-doped CuI films. The Zn-doped film had the maximum specific capacitance of 116 F g?1 at 2 mV/s.
关键词: Bandgap energies,Metallic dopants,CuI,SILAR,Specific capacitance
更新于2025-09-19 17:15:36