修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

87 条数据
?? 中文(中国)
  • Barbier Hyperbranching Polymerization-Induced Emission toward Facile Fabrication of White LED and Light Harvesting Film

    摘要: Luminescent polymers are generally constructed through polymerization of luminescent moieties. Polymerization itself however is mainly used for constructing polymer main chain and the importance of polymerization on luminescence has yet to be explored. Here, we demonstrate a polymerization-induced emission strategy producing luminescent polymers by introducing Barbier reaction to hyperbranching polymerization, which allows luminescent properties to be easily tuned from the traditional type to an aggregation-induced emission type by simply adjusting the monomer structure and the polymerization time. When rotation about the phenyl groups in hyperbranched polytriphenylmethanols (HPTPMs) is hindered, HPTPMs exhibit traditional emission property. When all phenyl groups of HPTPM are rotatable, i.e., p,p’,p’’-HPTPM, it exhibits interesting aggregation-induced emission property with tunable emission colors from blue to yellow, by just adjusting polymerization time. Further applications of aggregation-induced emission type luminescent polymers are illustrated by the facile fabrication of white LED and light harvesting film with an antenna effect greater than 14. This Barbier hyperbranching polymerization-induced emission provides a new strategy for the design of luminescent polymers, and expands the methodology and functionality library of both hyperbranching polymerization and luminescent polymers.

    关键词: white LED,luminescent polymers,aggregation-induced emission,polymerization-induced emission,light harvesting film,Barbier hyperbranching polymerization

    更新于2025-09-16 10:30:52

  • Fluorescent Supramolecular Polymersomes Based on Pillararene/Paraquat Molecular Recognition for pH-controlled Drug Release

    摘要: Researchers have put significant efforts on developing versatile fluorescent polymeric systems due to their promising biological/biomedical labelling, tracking, monitoring, imaging, and diagnostic applications. However, complicated organic/polymeric synthesis or post-modification of these functionalized platforms is still a big obstacle for their further application and thereby provides clear motivation for exploring alternative strategies for the design and fabrication of easily available fluorescent systems. The marriage of supramolecular polymers and fluorescent imaging can provide a facile and dynamic manner instead of tedious and time-consuming synthesis due to the dynamic and reversible nature of noncovalent interactions. Herein, based on water-soluble pillararene/paraquat molecular recognition, we successfully prepare two amphiphilic polypseudorotaxanes which can self-assemble into supramolecular polymersomes in water. These polymersomes can be reversibly destroyed and reformed by tuning the solution pH. Attributed to the aggregation-induced emission of tetraphenylethylene groups, intense fluorescence can be introduced into the obtained supramolecular polymersomes. Furthermore, pH-triggered release of an encapsulated water-insoluble drug (doxorubicin) from the self-assembled fluorescent supramolecular polymersomes is also investigated.

    关键词: Responsiveness,Aggregation-induced emission,Host-guest interactions,Fluorescent polymers

    更新于2025-09-16 10:30:52

  • Rational Design of Axially Chiral Platinabinaphthalenes with Aggregation-Induced Emission for Red Circularly Polarized Phosphorescent Organic Light-Emitting Diodes

    摘要: Circly polarized luminescent (CPL) materials have received great interest due to their potential applications in next-generation displays. However, the development of easily accessible red circularly polarized phosphorescent emitters for practical organic light-emitting diodes fabrication remains a grand challenge. In this paper, we report a new family of CPL-active platinum complexes based on the binaphthalene chiral platform. These axially chiral platinabinaphthalenes were facile synthesized by directly incorporating platinum(II) into the π-conjugated backbone of commercially available enantiopure binaphthalene derivate. These complexes exhibit aggregation-induced circularly polarized phosphorescence enhancement with high quantum yields up to 66% and luminescence dissymmetry factors around 2.6×10?3. Moreover, solution-processable circularly polarized organic light-emitting diodes (CPOLEDs) using these complexes as emitters show good performance with the maximum luminance up to 3500 cd m2 and dissymmetry factor values around 1.0×10?3. These findings by rational design of axially chiral platinabinaphthalenes are important for the development of high-performance CPL complexes for CPOLEDs.

    关键词: circularly polarized luminescence,binaphthalene,organic light-emitting diode,platinum complex,aggregation-induced emission

    更新于2025-09-16 10:30:52

  • Nanococktail Based on AIEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy

    摘要: Semiconducting polymers (SPs)-based dual photothermal therapy (PTT) obtained better therapeutic effect than single PTT due to its higher photothermal conversion efficiency. However, most dual PTT need to use two lasers for heat generation, which brings about inconvenience and limitation to the experimental operations. Herein, we report the development of “nanococktail” nanomaterials (DTPR) with 808 nm-activated image-guided dual photothermal properties for optimized cancer therapy. Methods: In this work, we co-encapsulated AIEgens (TPA-BDTO, T) and SPs (PDPPP, P) by using maleimide terminated amphiphilic polymer (DSPE-PEG2000-Mal, D), then further conjugated the targeting ligands (RGD, R) through “click” reaction. Finally, such dual PTT nanococktail (termed as DTPR) was constructed. Results: Once DTPR upon irradiation with 808 nm laser, near-infrared fluorescence from T could be partially converted into thermal energy through fluorescence resonance energy transfer (FRET) between T and P, coupling with the original heat energy generated by the photothermal agent P itself, thus resulting in image-guided dual PTT. The photothermal conversion efficiency of DTPR reached 60.3% (dual PTT), much higher as compared to its inherent photothermal effect of only 31.5% (single PTT), which was further proved by the more severe photothermal ablation in vitro and in vivo upon 808 nm laser irradiation. Conclusion: Such smart “nanococktail” nanomaterials could be recognized as a promising photothermal nanotheranostics for image-guided cancer treatment.

    关键词: semiconducting polymers,aggregation-induced emission fluorogens,fluorescence resonance energy transfer,A single laser,dual photothermal therapy

    更新于2025-09-16 10:30:52

  • Controlled assembly of AIEgens based on a super-quadruplex scaffold for detection of plasma membrane proteins

    摘要: Quantification of plasma membrane proteins (PMPs) is crucial for understanding the fundamentals of cellular signaling systems and their related diseases. In this work, a super-quadruplex scaffold was designed to regulate assembly of oligonucleotide-grafted AIEgens for detection of PMPs. The nonfluorescence oligonucleotide-grafted AIEgen (Oligo-AIEgen) was firstly synthesized by attaching the AIEgen to 3′-terminus of the oligonucleotide through click chemistry. Meanwhile, the tetramolecular hairpin-conjugated super-quadruplex (THP-G4) as cleavage element and signal enhancement scaffold composited of three elements: a substrate sequence of DNAzyme in the loop region, partial hybridization region in the stem, and six guanine nucleotides to form G-quadruplex. Once the DNAzyme was anchored on the specific PMPs through aptamer-protein recognition, the substrate sequence on the loop of THP-G4 was cleaved by DNAzyme with the aid of cofactor MnII, resulting in the conformation switch of THP-G4 to the activated G-quadruplex scaffold. The latter could assemble Oligo-AIEgens to generate aggregation-induced emission (AIE) enhancement, resulting in a simple and sensitive strategy for detection of membrane proteins. Moreover, the DNAzyme continuously cut the next THP-G4 to achieve recycling amplification. Under the optimized conditions, this AIE-based strategy exhibited good linear relationship with the logarithm of MUC1 concentration from 0.01 to 10 μg mL-1 with the limit of detection down to 4.3 ng mL-1. The G4-assembled AIEgens provides a universal platform for detecting various biomolecules and a proof-of concept for AIE biosensing.

    关键词: Biosensors,Fluorescence,DNAzyme,Aggregation-induced emission,DNA quadruplexes,Plasma membrane protein

    更新于2025-09-16 10:30:52

  • Facile structure-modification of xanthenone based OLED emitters exhibiting both aggregation induced emission enhancement and thermally activated delayed fluorescence

    摘要: Four new donor-acceptor compounds were designed, synthesized and investigated by theoretical and experimental approaches aiming to estimate effect of the structure of a donor on the properties of potential OLED emitters. Because of the different electron-donating abilities of the nitrogen-containing heterocycles, derivatives of xanthenone containing di-tert-butyl-carbazolyl, di-tert-butyl-acridanyl, di-tert-butyl-phenothiazinyl and penoxazinyl moieties exhibited different photophysical behavior. Because of big dihedral angles between the donors and acceptor as well as because of possibility of rotation around N-C bond, the designed compounds were characterized by thermally activated delayed fluorescence and aggregation induced emission enhancement effect. Twice higher photoluminesce quantum yields reaching 38% in doped films were obtained for compounds containing di-tert-butyl-carbazolyl and di-tert-butyl-acridanyl moieties as compared to those observed for compounds with the donors containing S and O heteroatoms. Strong effect of the donor substituents on charge injection (ionization potentials were in the range of 5.67-5.96 eV) and charge-transporting properties (hole and electron mobilities were in a wide range from 6.3×10-8 to 6.3×10-4 cm2V-1s-1 at electric field of 2.5×105 V·cm-1) was detected. The differently substituted compounds were utilized as emitters in OLEDs. Higher maximum values of external quantum efficiency (up to 3.5%) were observed for OLEDs based on emitters with nitrogen containing donors relative to estimated for OLEDs based on emitters containing di-tert-butyl-phenothiazinyl and penoxazinyl moieties.

    关键词: aggregation induced emission enhancement,xanthenone,Organic light-emitting diode,thermally activated delayed fluorescence

    更新于2025-09-12 10:27:22

  • Molecular Engineering of Thermally Activated Delayed Fluorescence Emitters with Aggregation-Induced Emission via Introducing Intramolecular Hydrogen-Bonding Interactions for Efficient Solution-Processed Nondoped OLEDs

    摘要: Purely organic luminescent materials concurrently exhibiting thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) features are in great demand due to their high efficiency in aggregation-state toward efficient non-doped OLEDs. Herein, a class of thermally activated delayed fluorescence (TADF) emitters adopting phenyl(pyridyl)methanone as electron-accepting segment and di(tert-butyl)carbazole and 9,9-dimethyl-9,10-dihydroacridine (or phenoxazine) as electron-donating groups are designed and synthesized. The existence of intramolecular hydrogen bonding is conducive to minish the energy difference between singlet and triplet (ΔEst), suppress non-radiative decay and increase the luminescence efficiency. By using 3CPyM-DMAC as emitter, the non-doped device via solution process realize high current efficiency (CE) and external quantum efficiency (EQE) of 35.4 cd A-1 and 11.4 %, respectively, which is superior to that of CBM-DMAC with CE and EQE of 14.3 cd A-1 and 6.7 %. This work demonstrates a promising tactics to the establishment of TADF emitters with AIE features via introducing intramolecular hydrogen-bonding.

    关键词: organic light-emitting diodes (OLEDs),nondoped,thermally activated delayed fluorescence (TADF),solution processed,aggregation-induced emission (AIE)

    更新于2025-09-12 10:27:22

  • Through-space charge transfer in luminophore based on phenyl-linked carbazole- and phthalimide moieties utilized in cyan-emitting OLEDs

    摘要: Two new carbazole-containing aromatic imides were synthesized by three-step synthetic pathway with the moderate yields up to 76%. The compounds were investigated theoretically. TD-DFT computational studies revealed low singlet-triplet energy di?erences. The compounds were found to have relatively high thermal stability with 5% mass loss temperatures in the range of 280–310 °C. Phthalimide-based compound exhibited aggregation-induced emission enhancement and thermally activated delayed ?uorescence with photo-luminescence quantum e?ciency of 20% in the solid state. Structure-properties relationship of this compound was investigated and it was found that charge-transfer through space mechanism is responsible for the emission. Series of green-emitting doped and non-doped electroluminescent devices were fabricated based on the carbazole-phthalimide derivative were fabricated to reveal best-performing mCP-doped device demonstrating maximum external quantum e?ciency of 2.4% with current e?ciency of 6.6 cd/A and power e?ciency of 4.0 lm/W with maximum brightness of 8300 cd/m2.

    关键词: Cyan-emitting OLED,Aromatic imide,Through-space charge transfer,Aggregation-induced emission enhancement,Thermally activated delayed ?uorescence

    更新于2025-09-12 10:27:22

  • Benzoylpyridine-based TADF emitters with AIE feature for efficient non-doped OLEDs by both evaporation and solution process

    摘要: Fluorescent materials taking both advantages of evaporation and solution processes are urgently explored for the development of efficient and simplified organic light-emitting diodes (OLEDs). Furthermore, it is another huge challenge for such materials to achieve excellent electroluminescence performances in non-doped OLEDs. Herein, two new emitters, named as PyB-DPAC and PyB-DMAC with 4-benzoylpyridine moiety as the electron acceptor and 9,9-diphenyl-9,10-dihydroacridine or 9,9-dimethyl-9,10-dihydroacridineas the electron donor were synthesized and explored. Both emitters exhibit distinct TADF character, typical AIE feature and relatively high photoluminescence quantum yields. Accordingly, we demonstrated efficient non-doped vacuum-deposited OLED based on the PyB-DPAC with a maximum external quantum efficiency (EQE) up to 9.7%, and meanwhile an extremely low efficiency roll-off of 1.7% at a high brightness of 1000 cd m-2. In addition, an impressive EQE of 11.1% can be realized from the solution-processed non-doped devices with the using of PyB-DPAC emitter. These affirmative results manifest that TADF emitters incorporate with the benzoylpyridine acceptor enabling a promising molecular design strategy in adapt to the non-doped evaporation- and solution-processed highly efficient OLEDs.

    关键词: benzoylpyridine,Organic light-emitting diode,thermally activated delayed fluorescence,aggregation-induced emission

    更新于2025-09-12 10:27:22

  • Regulating the Phase Separation of Ternary Organic Solar Cells via 3D Architectured AIE Molecules

    摘要: An optimized bulk heterojunction (BHJ) interface, certifying enhanced exciton-splitting, charge separation and recombination inhibition, is vastly desired to obtain high power conversion efficiencies (PCEs). Herein, the ternary strategy has been employed to effectively modify the phase separation between the J71:ITIC blend by incorporating a 3D aggregation-induced emission (AIE) material, Tetraphenylethylene (TPE). Hence, as a consequence of improved charge mobility, lower bimolecular recombination and enhanced fill factor (FF), an excellent PCE of 12.16% has been achieved; a 21.23% increment over the PCE of binary devices. Likewise, Flory-Huggins parameter (c ) and surface free energy analysis reveals a high degree of miscibility between J71 and TPE, that leads to a rearrangement at the D-A interface such that TPE settles in between the D and A and thus forces the ITIC away from J71 and out of the mixed phase, indicating relatively higher average acceptor domain purity at the interface and ultimately better FF and PCE for the ternary devices. Likewise, TPE inclusion in various other fullerene and nonfullerene systems also leads to similar results, signifying this to be an effective methodology to boost the PCEs of the organic solar cells, especially for the systems with low FF.

    关键词: energy transfer,aggregation-induced emission,3D molecule,ternary organic solar cells,bulk heterojunction interface,phase separation

    更新于2025-09-12 10:27:22