- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Degradation of Ciprofloxacin and Inactivation of Ciprofloxacin Resistant E. Faecium during UV-LED (275 nm)/Chlorine Process
摘要: Ciprofloxacin and ciprofloxacin-resistant bacteria are emerging concerns that threaten public health due to the heavy use of antibiotics and the development of bacterial resistance in water environments. In this study, we examined an energy-efficient treatment driven by a UV-LED/chlorine reaction with UV-LED chip emitting UV275 nm to remove ciprofloxacin and ciprofloxacin-resistant bacteria in water. Ciprofloxacin degradation during the UV-LED/chlorine reaction followed pseudo-first-order kinetics, and the excessive chlorine dosage has a negative effect on ciprofloxacin removal. Alkaline pH showed the best efficiency for ciprofloxacin removal, and the reactive chlorine species (RCS) played a major role at alkaline pH values. The cleavages of piperazine, cyclopropyl, and quinolone moieties are considered as the principal degradation reactions in the UV-LED/chlorine reaction. Seven byproducts (m/z = 362.9262, 306.1246, 289.0995, 288.1504, 263.0825, 147.0657, and 1183.9977), two chlorinated compounds (chloroform and chlorate) and two anions (formate and nitrate ions) were observed as the identified byproducts. Toxicity of tentatively identified byproducts were estimated by using quantitative structure activity relationship (QSAR). The complete detoxification of D. magna was achieved when applying UV-LED/chlorine process into hospital wastewater containing CIP. The UV-LED/chlorine process showed the best disinfection ability of E. faecium compared to UV-LED photolysis, chlorination, and UV-LED/H2O2 reactions. A significantly lower EE/O value (6.63 × 10-2 kWh/m3/order) during the UV-LED/chlorine reaction was also observed. Our results indicate that the UV-LED/chlorine process can effectively degrade ciprofloxacin and inactivate ciprofloxacin-resistant bacteria.
关键词: toxicity,UV-LED,ciprofloxacin,byproducts,antibiotic-resistant bacteria,Chlorine
更新于2025-09-23 15:21:01
-
Degradation and transformation of natural organic matter accountable for disinfection byproduct formations by UV photolysis and UV/chlor(am)ine
摘要: This research aimed to investigate the degradation of natural organic matter responsible for the formation of trihalomethane (THM), haloacetic acid (HAA) and haloacetonitrile (HAN) during UV photolysis and a co-exposure of UV with chlorine (UV/chlorine) and chloramine (UV/chloramine). Low pressure UV (LPUV) and vacuum UV (VUV) lamps were used for photolysis. VUV and LPUV irradiation changed aromatic/unsaturated structures to aliphatic ones, resulting in decreased THM and HAN formation. Following irradiation for 60 minutes, LPUV decreased THM and HAN by 16% ± 2% and 20% ± 6%, respectively. VUV decreased THM and HAN formation by 23% ± 3% and 20% ± 8%, respectively. HAA formation increased following photolysis. UV/chlorine treatment decreased THM, HAA and HAN. Higher chlorine doses had an inversely proportional relationship with THM and HAN formation. A chlorine dose of 4 mg·L?1 led to the greatest reductions, corresponding to 42% ± 2%, 10% ± 10% and 18% ± 6% for THM, HAA and HAN, respectively. UV/chloramine decreased the formation of THM more than UV/chlorine. With a chloramine dose of 4 mg·L?1, THM, HAA and HAN formation decreased by 74% ± 10%, 10% ± 10% and 11% ± 10%, respectively. This study showed the potential use of UV/chlor(am)ine for controlling the formation of THM, HAA and HAN.
关键词: UV/chlor(am)ine,advanced oxidation process,disinfection byproducts,UV photolysis
更新于2025-09-09 09:28:46
-
Effects of chlorination on the fluorescence of seawater: Pronounced changes of emission intensity and their relationships with the formation of disinfection byproducts
摘要: Chlorination of coastal (CS) and deep ocean (DO) seawater was accompanied by a prominent decrease (of up to 70%) of the intensity of its emission which was measured using a 315 nm excitation wavelength. Deconvolution of the emission spectra of CS and DO seawater showed that these spectra comprised three Gauss-shaped bands. The intensities of two of these bands decreased rapidly as the halogenation proceeded. For both DO and CS seawater, two stages of changes of their fluorescence were observed. The first stage in which the relative changes of the fluorescence intensity (DF/F) were between zero to 0.30 and 0.40 was not accompanied by the release of individual disinfection byproduct (DBP) species. For DF/F values above the corresponding thresholds, the relative changes of fluorescence intensity were well correlated with the concentrations of individual DBP species such as trihalomethanes and haloacetonitriles. R2 values for CHBr3, CHBr2Cl and CHBrCl2 formed in DO seawater were 0.83, 0.80 and 0.68, respectively while for CS seawater, the corresponding R2 values were 0.91, 0.93 and 0.92. The presented data demonstrate that the intrinsic chemistry of DBP formation and dissolved organic matter (DOM) halogenation in seawater can be well quantified based on the examination of changes of its fluorescence. This approach can also be employed for practical monitoring of changes of properties of marine DOM and generation of DBPs in desalination, marine aquaculture and other processes.
关键词: Chlorination,Disinfection byproducts,Fluorescence,Seawater,Coastal,Correlation
更新于2025-09-04 15:30:14