- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Identification and imaging of miR-155 in the early screening of lung cancer by targeted delivery of octreotide-conjugated chitosan-molecular beacon nanoparticles
摘要: Lung cancer is still the most common cancer globally. Early screening remains the key to improve the prognosis of patients. There is currently a lack of specific and sensitive methods for early screening of lung cancer. In recent years, studies have found that microRNA plays an important role in the occurrence and development of lung cancer and become a biological target in the early diagnosis of lung cancer. In this study, lung cancer cells, subcutaneous xenografts of lung cancer in nude mice, and Lox-Stop-lox K-ras G12D transgenic mice were used as models. The transgenic mice displayed the dynamic processes from normal lung tissue to atypical hyperplasia, adenomas, carcinoma in situ and lung adenocarcinoma. It was found that miR-155 and somatostatin receptor 2 (SSTR2) were expressed in all the disease stages of transgenic mice. Through molecular beacon (MB) technology and nanotechnology, chitosan-molecular beacon (CS-MB) nanoparticles and targeted octreotide (OCT) were conjugated and synthesized. The octreotide-conjugated chitosan-molecular beacon nanoparticles (CS-MB-OCT) can specifically bind to SSTR2 expressed by the lung cancer cells to achieve the goal of identification of lung cancer cells and imaging miR-155 in vivo and in vitro. Fluorescence imaging at different disease stages of lung cancer in Lox-Stop-lox K-ras G12D transgenic mice was performed, and could dynamically monitor the occurrence and development of lung cancer by different fluorescence intensity ranges. The current research, in turn, provides new idea, new method, and new technology for the early screening of lung cancer.
关键词: chitosan nanoparticles,molecular imaging,molecular beacon,Lung cancer,microRNA-155
更新于2025-09-23 15:23:52
-
Highly sensitive and selective estimation of aspartame by chitosan nanoparticles–graphene nanocomposite tailored EQCM-MIP sensor
摘要: Here, a molecularly imprinted electrochemical quartz crystal microbalance (MIP-EQCM) sensor for aspartame is developed by grafting the aspartame-imprinted polymeric matrix of chitosan on gold-coated quartz crystal electrode. Chitosan nanoparticles being biocompatible, biodegradable and also having large surface area provide a better platform by forming a well-dispersed composite suspension with graphene. Additionally graphene facilitates direct electron transfer to electrode surface for electrochemical study because of having enhanced electrical conductivity. This EQCM-MIP sensor was characterized by atomic force microscopy, contact angle measurements, cyclic voltammetry and differential pulse voltammetry (DPV). The obtained MIP showed high affinity to aspartame. A reliable method for analysis of aspartame in real and commercial samples was achieved by coupling EQCM-MIP with DPV. Linear relationship with R2 = 0.9749 (EQCM) and R2 = 0.9760 (DPV) on binding of aspartame at various concentrations was observed. Detection limit of 0.45 μg mL?1 (EQCM) and 0.07 μg mL?1 (DPV) of the fabricated sensor shows that high sensitivity and high selectivity among various structural analogues of aspartame were also achieved. The improved detection limit is promising for determination of trace amount of aspartame. This demonstrates good memory capacity of this EQCM sensor. High recovery percentage and applicability of EQCM-MIP sensor in real matrices and commercial samples offers good potential for various applications.
关键词: Electrodeposition,Aspartame,Quartz crystal microbalance,Graphene,Chitosan nanoparticles,Molecular imprinting
更新于2025-09-23 15:21:21