- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Accidental contamination of substrates and polymer films by organic quantum emitters
摘要: We report the observation of ubiquitous contamination of dielectric substrates and polymethylmethacrylate matrices by organic molecules with optical activity in the visible spectral range. Contamination sites of individual solvent-related fluorophores in thin films of polymethylmethacrylate constitute fluorescence hotspots with quantum emission statistics and quantum yields approaching 30% at cryogenic temperatures. Our findings not only resolve prevalent puzzles in the assignment of spectral features to various nanoemitters on bare dielectric substrates or in polymer matrices, they also identify means for simple and cost-efficient realization of single-photon sources in the visible spectral range.
关键词: contamination of substrate and polymer matrix,organic fluorophores,single photon emitters,single molecule spectroscopy,Photoluminescence and fluorescence spectroscopy
更新于2025-11-25 10:30:42
-
Monitoring of polycyclic aromatic hydrocarbon contamination at four oil spill sites using fluorescence spectroscopy coupled with parallel factor-principal component analysis
摘要: Fluorescence spectroscopy analysis of oil and environmental samples collected from four oil spill incidents in Canada—a 2016 pipeline spill into the North Saskatchewan River (NSR), Saskatchewan; a 2015 train derailment in Gogama, Ontario; the 1970 sinking of the SS Arrow ship in Chedabucto Bay, Nova Scotia; and the 1970 sinking of the Irving Whale barge in the Gulf of St. Lawrence—permitted assessment of the PAH content of environmentally weathered samples. A recently developed fluorescence fingerprinting model based on excitation–emission matrix-parallel factor analysis-principal component analysis (EEM-PARAFAC-PCA) was applied to (i) evaluate the intensity of the abundant PAH groups in the samples, (ii) investigate changes in the PAH composition of environmental samples over time due to weathering, and (iii) classify the original spilled oil and environmental samples within the already established classes of the fingerprinting PCA model. The environmental sediment samples collected from the Husky Energy spill site show loss of PAHs occurring over the course of 15 months post-spill. However, the extent of weathering depends on several environmental factors rather than solely the time of weathering, the PAH loss was maximum at 15 months. There was a decrease in the PAH content of the environmental samples of Gogama spill collected 20 months post-spill. Almost all of Gogama environmental sediment samples underwent substantial weathering, making PCA classification impractical. The SS Arrow and Irving Whale samples fell within adjacent PCA groups, as they both had a similar type of spilled oil (Bunker C) with similarity in chemical composition.
关键词: EEM-PARAFAC-PCA,fluorescence spectroscopy,environmental monitoring,oil spill,PAH contamination
更新于2025-11-19 16:56:42
-
Photocatalytic and Antimicrobial Properties of Ga Doped and Ag Doped ZnO Nanorods for Water Treatment
摘要: Water contamination is a worldwide concerning problem. Emerging contaminants have made conventional water treatment processes ineffective. This makes the search for new materials with improved physical-chemical properties for water treatment an urgent necessity. Doping metal oxides nanostructures can improve the photocatalytic degradation of contaminants and the antimicrobial activity of the material. During this process, water treatment not only involves the degradation of toxic pollutants, but also the elimination of virus and bacteria. Then, it is important to study not only the effect of a dopant in a material as photocatalyst but also the effect in its antimicrobial properties. In this work ZnO nanorods, Ga doped ZnO nanorods and Ag doped ZnO nanorods are synthesized and supported in polyethylene by a fast-hydrothermal microwave heating synthesis. Their photocatalytic performance and antimicrobial properties for water treatment were evaluated. Experiments show that Ag and Ga can improve the photocatalytic and antimicrobial properties of ZnO nanorods; the relationship between doping concentrations, with both the toxicity effect of the nanorods toward bacteria and the nanorods photocatalytic performance, is shown.
关键词: doping,water,antimicrobial,nanorods,contamination,metal oxide,photocatalysis,zinc oxide
更新于2025-11-19 16:56:35
-
A review of Quartz Crystal Microbalances for Space Applications
摘要: The aim of this work is a technical review about Quartz Crystal Microbalance (QCM) sensors used in space missions, i.e. Space Shuttle flights, i.e. NASA Space Transportation System (NASA STS) and satellite missions, that aimed at monitoring the contamination generated by outgassing processes of materials onboard satellites and sensitive payloads. The contamination processes are critical for scientific instrumentation (e.g. optics, telescopes, detectors) because scientific measurements and performances can be jeopardized or worsened by uncontrolled contamination. This issue has been addressed by the space agencies, e.g. NASA, ESA and JAXA that have implemented many different studies to monitor the material outgassing and degradation in space environment. During the past years, the QCM sensors have become the baseline solution for measuring material outgassing and characterizing the on-orbit contamination environment. This work summarizes the main QCM applications in Space and their findings, providing an overview of the sensors’ performances in terms of stability, power, data rate, measurement accuracy and resolution. Different QCM technologies will be compared highlighting the advantages of their use for the next space missions and instrumentations that require an accurate monitoring of contamination environment. In particular, due to more severe contamination requirements for next payloads and instrumentations, QCM sensors would be useful to estimate the cleanliness degree by evaluating the induced contamination and degradation on sensitive instrumentations.
关键词: quartz crystal microbalance,contamination monitoring,spacecraft contamination,molecular and particulate contamination,outgassing,satellite contamination
更新于2025-09-23 15:23:52
-
High efficient catalytic degradation of tetracycline and ibuprofen using visible light driven novel Cu/Bi2Ti2O7/rGO nanocomposite: Kinetics, intermediates and mechanism
摘要: The photoexcited charge carriers trapping was an effective way to generate a large number of active species like O2?? and ?OH radicals to oxidize pharmaceutical molecules. In ternary Cu/Bi2Ti2O7/rGO composite Cu nanoparticles and rGO sheets act as charge carrier trappers and the suppression of e--h+ pair recombination was confirmed by Photoluminescence analysis. The Cu/Bi2Ti2O7/rGO composite exhibited higher photocatalytic degradation efficiency for degradation of ibuprofen and tetracycline molecules under visible light irradiation within 90 min. Therefore, this research designates a promising strategy for higher photoexcited charge carrier trapping photocatalyst design for efficient degradation of pharmaceutical molecules.
关键词: Nanocomposite,Visible light-driven,Hydrothermal,Pharmaceutical contamination.,Charge carrier trappers
更新于2025-09-23 15:23:52
-
Efficient and selective sensing of Cu2+ and UO22+ by a europium metal-organic framework
摘要: We report here the investigation of using a luminescent europium organic framework, [Eu2(MTBC)(OH)2(DMF)3(H2O)4]·2DMF·7H2O (denoted as compound 1), for detecting of both Cu2+ and UO2 2+ with high sensitivity. Based on the spectroscopy analysis, compound 1 could selectively respond to Cu2+ and UO2 2+ ions among other selected monovalent, divalent, trivalent metal cations based on a turn-off mechanism. The detection limit of compound 1 towards Cu2+ ion was as low as 17.2 μg/L, which is much lower than the maximum tolerable concentration of Cu2+ in drinking water (2 mg/L) defined by United States Environmental Protection Agency. On the other hand, the detection limit towards UO2 2+ ions is 309.2 μg/L, which could be used for detecting uranium in relative severely contaminated areas. The concentration-dependent luminescence intensity evolution process could be fully understood by the absorption kinetics and isotherm investigations. Furthermore, the quenching mechanism was elucidated by the UV-vis, excitation, luminescence, and lifetime studies. Compound 1, as the first MOF based luminescence probe for both Cu2+ and UO2 2+ ions, provides insight into developing MOF-based multifunctional sensors for both nonradioactive and radioactive elements.
关键词: Adsorption,Copper and uranium contamination,Luminescent metal organic frameworks,Detection
更新于2025-09-23 15:23:52
-
[IEEE 2018 International Ural Conference on Green Energy (UralCon) - Chelyabinsk (2018.10.4-2018.10.6)] 2018 International Ural Conference on Green Energy (UralCon) - Development of Effective Device for Protection of Solar Modules from Contamination
摘要: This paper considers the problem of the contamination of the solar modules' surface in the industrial megalopolis. It shows the methods of manual and automated cleaning and the characteristics of contaminant's composition. A new device construction for protecting modules from finely divided dust, based on electron-ion technology principles is proposed. It is established that the catch level of dust particles is determined by the Deutsch formula and depends on the electric field voltage, created by the high potential of the precipitation plates. The calculation of catching dust particles efficiency depending on the air flow speed is done. A pulse source scheme of a high-voltage is developed.
关键词: electron-ion technology,contamination,solar modules,dust catching efficiency
更新于2025-09-23 15:22:29
-
A Model Study of the Photochemical Fate of As(III) in Paddy-Water
摘要: The APEX (Aqueous Photochemistry of Environmentally-occurring Xenobiotics) software previously developed by one of us was used to model the photochemistry of As(III) in paddy-field water, allowing a comparison with biotic processes. The model included key paddy-water variables, such as the shielding effect of the rice canopy on incident sunlight and its monthly variations, water pH, and the photochemical parameters of the chromophoric dissolved organic matter (CDOM) occurring in paddy fields. The half-life times (t1/2) of As(III) photooxidation to As(V) would be ~20–30 days in May. In contrast, the photochemical oxidation of As(III) would be much slower in June and July due to rice-canopy shading of radiation because of plant growth, despite higher sunlight irradiance. At pH < 8 the photooxidation of As(III) would mainly be accounted for by reaction with transient species produced by irradiated CDOM (here represented by the excited triplet states 3CDOM*, neglecting the possibly more important reactions with poorly known species such as the phenoxy radicals) and, to a lesser extent, with the hydroxyl radicals (HO?). However, the carbonate radicals (CO3??) could be key photooxidants at pH > 8.5 provided that the paddy-water 3CDOM* is sufficiently reactive toward the oxidation of CO32?. In particular, if paddy-water 3CDOM* oxidizes the carbonate anion with a second-order reaction rate constant near (or higher than) 106 M?1·s?1, the photooxidation of As(III) could be quite fast at pH > 8.5. Such pH conditions can be produced by elevated photosynthetic activity that consumes dissolved CO2.
关键词: paddy-field floodwater,sunlight-induced reactions,arsenic contamination
更新于2025-09-23 15:22:29
-
Camera sensor-based contamination detection for water environment monitoring
摘要: Water environment monitoring is of great importance to human health, ecosystem sustainability, and water transport. Unlike traditional water quality monitoring problems, this paper focuses on visual perception of water environment. We first introduce the development of a customized aquatic sensor node equipped with an embedded camera sensor. Based on this platform, we present an efficient and holistic contamination detection approach, which can automatically adapt to the detection of floating debris in dynamic waters or the identification of salient regions in static waters. Our approach is specifically designed based on compressed sensing theory to give full consideration to the unique challenges in water environment and the resource constraints on sensor nodes. Both laboratory and field experiments demonstrate the proposed method can fast and accurately detect various types of water pollutants and is a better choice for camera sensor-based water environment monitoring compared with other methods.
关键词: Contamination detection,Camera sensor,Compressed sensing,Environmental monitoring
更新于2025-09-23 15:21:21
-
Xenobiotic Contamination of Water by Plastics and Pesticides Revealed Through Real-time, Ultrasensitive and Reliable Surface Enhanced Raman Scattering
摘要: Uncontrolled utilization and consequent ubiquitous percolation of carcinogenic and xenobiotic contaminants, such as plasticizers and pesticides, into ecosystem has created an immediate demand for robust analytical detection techniques to identify their presence in water. Addressing this demand, we uncover the presence of xenobiotic contaminants such as Bisphenol A (BPA), Triclosan (TC), and Dimethoate (DM) through a robust, ultrasensitive and reliable Surface Enhanced Raman Scattering (SERS) platform. Thereby, conclusive real-time evidence of degradation of polyethylene terephthalate (PET) leading to release of BPA in water is presented. Worryingly, the release of BPA occurs at ambient temperature (40 0C) and within realistic timescales (12 hours) that are regularly encountered during the handling, transport and storage of PET-based water containers. Complementary mass-spectrometric, surface-specific atomic force microscopy and surface selective X-ray Photoelectron spectroscopy confirms the nanoscale surface degradation of PET through loss of C=O and C-O surface functionalities. Such ultra-sensitive (ppm-level), spectroscopic detection is enabled by the bottom-up assemblies of metal nanoparticles (Soret Colloids, SCs) acting as SERS platform to provide high analytical enhancement factor (108) with high reliability (relative standard deviation, RSD <5%). Effective and rapid detection (30 s) of several other potential xenobiotic contaminants such as Triclosan (TC) and Dimethoate (DM) over a wide range of concentrations (10-5 to 10-1 M) has also been demonstrated. Finally, non-destructive real-time spectroscopic “sniffing” of organophosphorous pesticides from the surface of fruits is achieved, illustrating the multi-phasic versatility of this label-free, non-lithography-based SERS platform.
关键词: plastic degradation,Soret colloids,water and food contamination,real-time detection,nanoparticle assembly,surface enhanced Raman scattering,Xenobiotics
更新于2025-09-23 15:21:01