- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Copper-Based Volumetric Filler Dedicated for Ag Paste for Depositing the Front Electrodes by Printing on Solar Si Cells
摘要: In this work we present research results on a new paste NPCuXX (where: NP—new paste, CuXX—component, XX—a modifier consisting of Ni and other important elements) based on a copper composite (CuXX) for fabrication of front electrodes in silicon solar cells. The CuXX composite is obtained by chemical processing of copper powder particles and can be used in two ways: as an additive to commercially available paste or as a base material for a new paste, NPCuXX. The CuXX offers the possibility to exchange up to 30 and 50 wt.% Ag into Cu, which significantly decreases the solar cells material costs, and therefore, the overall solar cell price. Emphasis was placed on a proper mass suitable fabrication process of the CuXX component. The NPCuXX paste has been applied both to conventional cell structures such as aluminum-back surface field (Al-BSF) and passivated emitter and rear contact (PERC), and finally solar cells with front electrodes deposited by screen-printing method were fabricated and characterized by current-voltage techniques. This paper reports the first implementation of the copper volumetric material into a screen print paste used in a high-temperature metallization process to fabricate the front contacts of Si solar cells with a highest fill factor of 77.92 and 77.69% for the abovementioned structures, respectively.
关键词: crystalline silicon solar cells,front electrode,copper-based volumetric filler
更新于2025-11-14 17:04:02
-
An investigation on determinants of silver paste metallization contact performance on crystalline silicon solar cells
摘要: Since the application of silver (Ag) electrodes is of vital importance to the power output of crystalline silicon (c-Si) solar cells, the factors affecting Ag paste metallization contact performance on Si wafers need to get well understood. Herein, the correlation of Ag/Si contact resistivity and glasses used in Ag paste was studied comprehensively. Here taken for exemplification are three types of glass samples used in Ag paste, because the application of them can result in obvious differences in the contact interface characteristics as well as in the contact resistivity. It was found that the factors affecting contact resistivity include the formation of Ag colloids in the glass phase, the doping concentration in the contacted Si surface, and the fixed charge density and defect states density at the interface. In terms of these issues, the key functions and mechanisms of glasses used in Ag paste are elucidated, and also their effects on electrical performance of cells are discussed in this article.
关键词: glass frit,metallization contact,contact resistivity,crystalline silicon solar cells,silver paste
更新于2025-09-23 15:21:01
-
Dependence of the Optimization of the Front Grid Design in Passivated Emitter and Rear Contact c-Si Solar Cells on the Finger Width and the Aspect Ratio
摘要: In this research, modeling was performed to optimize the grid of the front surface of a solar cell with the passivated emitter and rear contact (PERC) structure by considering the recombination characteristics. The front surface recombination velocity can be reduced in two main ways. The first method is to reduce the emitter Auger recombination by lowering the surface doping concentration during emitter formation, and the second method is to reduce the recombination that occurs at the surface when the electrode and the silicon are in contact, which is called metal-induced recombination and is represented by J0.metal. Because J0.metal increases in proportion to the area of the front electrode, minimizing the finger width and number by optimizing the electrode design is important. Therefore, the front electrode grid should be designed considering the emitter characteristics, J0.metal, according to the number of fingers and the resistance. In this research, the front grid of the solar cell was optimized via modeling using equations to calculate the number of fingers and the resistance. According to the finger width, the number of busbars, the sheet resistance, the aspect ratio, and the number of fingers corresponding to the maximum efficiency were identified. As a result, this modeling enabled us to optimize the front grid to the desired conditions, and we found that an increase in the number of busbars plays an important role in improving the efficiency of solar cells. In addition, the efficiency change with increasing number of busbars can be seen to be affected by the width of the finger and the resolution of the printed finger rather than the aspect ratio.
关键词: Aspect ratio,Finger width,Resistance,Front grid optimization,Crystalline silicon solar cells
更新于2025-09-23 15:21:01
-
Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies
摘要: The efficiency of photovoltaic energy conversion is a decisive factor for low-cost electricity from renewable energies. In recent years, the efficiency of crystalline silicon solar cells in mass production has increased annually by about 0.5–0.6%abs per year. In order to maintain this development speed, new technologies must be developed and transferred to industrial production. After the transition from full area Al back surface field cells to passivated emitter and rear contact cells, passivating contacts are an important step to get as close as possible to the efficiency limit of single junction Si solar cells. The theoretical background and the two prominent technologies for passivating contacts are presented and discussed. After implementing passivating contacts, the fundamental limit of single junction Si solar cells of 29.4% is in reach. Multi-junction solar cells are the most promising option to achieve efficiencies greater than 30%. Tandem technologies based on crystalline silicon as bottom cells have the advantage that they are based on a mature technology established on a gigawatt scale and can partially use the existing production capacity. In addition, silicon has an ideal bandgap for the lower subcell of a tandem solar cell. The two most promising material candidates for the top cell, i.e., III/V and perovskites, will be discussed. The presented technology routes show that silicon is able to maintain its outstanding position in photovoltaics in the coming years.
关键词: perovskites,multi-junction solar cells,III/V,photovoltaic energy conversion,passivating contacts,tandem technologies,crystalline silicon solar cells
更新于2025-09-23 15:19:57
-
Largea??area Luminescent Downshifting Layer containing Eu3+ Complex for Crystalline Silicon Solar Cells
摘要: The spectral mismatch between the distribution of sunlight (AM1.5G) and crystalline silicon (c-Si) solar cells is one of the most limiting factors for the conversion efficiency of photovoltaic (PV) devices. As an effective solution, luminescent down-shifting (LDS) technique is an important way to improve the short-wavelength response of a solar cell by shifting high-energy photons to the visible range. Herein, large-area (17×17 cm2) luminescent thin film consisting of ternary europium (Eu3+) complex and polyvinyl alcohol (PVA) was successfully constructed through solution casting method, and further developed as an effective LDS layer to improve the photoelectric conversion efficiency of c-Si solar cells with large active area (235 cm2). The self-standing LDS layer is both flexible, transparent and easily attachable to the surface of solar cell module. Compared with the uncoated c-Si solar cell, one coated with LDS layer displayed an enhancement of ~15% in external quantum efficiency (EQE) due to the highly luminescent quantum yield of Eu3+ complex doped inside the layer. These results demonstrate that large area luminescent film embedding Eu3+ complex is a versatile and effective strategy to improve the conversion efficiency of large size PV devices, giving rise to great potential applications as LDS materials.
关键词: Eu3+ complex,luminescent down-shifting,photoelectric conversion efficiency,crystalline silicon solar cells,large-area luminescent film
更新于2025-09-23 15:19:57
-
Modified laser‐fired contact process for efficient PERC solar cells
摘要: A laser‐fired contact (LFC) process is one of the techniques for making local electrical contacts at the rear side of passivated emitter and rear cell (PERC) solar cells. In the LFC process, opening of the passivated dielectric layers and alloying of Si and Al need to be made in a single step laser process. For this reason, the LFC process is accompanied by the loss of Al and the laser damage to the Si wafer. In this study, we present a novel multistep LFC process combining the conventional LFC and laser‐induced forward transfer (LIFT) processes. The modified LFC scheme we proposed consists of three steps: (a) opening of the passivation layers and partial alloying of Al‐Si, (b) additional deposition of Al on the local contact holes, and (c) post laser firing of the transferred Al. Applying the modified LFC process to the PERC cells of 1.0 cm2 of area, we demonstrate the effective recombination velocity of the laser‐processed wafers can be remarkably reduced while maintaining the low contact resistance. The best of the PERC solar cell fabricated by the modified LFC process exhibited an efficiency of 19.5% while the conventional LFC‐PERC cell showed 18.6%. The efficiency gains of the modified LFC‐PERC cells was largely contributed by the enhanced open circuit voltage (Voc) and fill factor (FF).
关键词: contact resistance,crystalline silicon solar cells,PERC cell,pulsed laser,laser‐fried contact,implied Voc
更新于2025-09-19 17:13:59
-
Layer by Layer Self-Assembly of Hollow Nitrogen-Doped Carbon Quantum Dots on Cationized Textured Crystalline Silicon Solar Cells for Efficient Energy Down-Shift
摘要: Enhancing the efficiency of crystalline silicon solar cell (c-Si SC) by coating the energy shifting layer of quantum dots (QDs) is a recent approach to efficiently utilize the high energy spectrum of light. Carbon QDs are an attractive candidate for such applications, however, small Stokes shift and non-uniform coating due to high aggregation are the bottlenecks to fully utilize their potential. For the purpose, here we propose a layer by layer self-assembled uniform coating of ecofriendly red-emissive hollow nitrogen-doped carbon QDs (NR-CQDs), as an efficient energy-down shifting layer. A unique hollow and conjugated structure of NR-CQDs was designed to achieve a large Stokes shift (UV excited - red emission), with a quantum yield (QY) comparable to Cd/Pb QDs. Highly uniform coating of intrinsically negatively charged NR-CQDs on c-Si SCs was achieved by cationizing the c-Si SC by Bovine serum albumin (BSA), under mildly acidic conditions. By opposite charge assisted self-assembled over-layer, the short-circuit current density (Jsc) and power-conversion efficiency was increased by 5.8%, which is attributed to the large Stokes shift (255 nm) and high QY. Blue-emissive undoped-carbon QDs were synthesized for comparison with the proposed NR-CQDs, to elucidate the significance of the novel proposed structure.
关键词: energy-downshift,crystalline silicon solar cells,layer by layer self-assembly,Nitrogen-doped carbon quantum dots,cationization,photoluminescence
更新于2025-09-19 17:13:59
-
Textured PDMS Films Applied to Thin Crystalline Silicon Solar Cells
摘要: Front surface texturization is a standard procedure used to improve optical properties of photovoltaic devices. In some particular cases, such as when dealing with ultrathin substrates, common texturization techniques can become unpractical or even unfeasible. Texturized polymer films applied on top of such devices may be used as an alternative. In this article, we report on the development of textured polydimethylsiloxane (PDMS) films to be placed on top of planar crystalline silicon solar cells based on thin substrates (≤40 μm). The PDMS polymer is deposited onto a rough surface (conventional random pyramid textured silicon), cured and detached from it. By scanning electron microscope images, we demonstrate that the dilution of PDMS into toluene helps in a better replica of the master surface. Next, we apply the optimized PDMS films on top of dummy samples based on 10, 20, and 40 μm thick crystalline silicon (c-Si) substrates whose reflectance is significantly reduced after placing the PDMS films. Accurate optical simulations indicate that the optical improvement comes from three mechanisms: higher light transmission into the device, lower reflectance at the c-Si surface, and better light trapping properties at the thin c-Si absorber. Experimental verification of the optical improvement with texturized PDMS films is reported based on 40 μm thick solar cell, where a short-circuit current density gain of 1.7 mA/cm2 is observed.
关键词: Surface texture,thin crystalline silicon solar cells
更新于2025-09-16 10:30:52
-
Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications
摘要: Crystalline-silicon solar cells have dominated the photovoltaics market for the past several decades. One of the long standing challenges is the large contribution of silicon wafer cost to the overall module cost. Here, we demonstrate a simple process for making high-purity solar-grade silicon films directly from silicon dioxide via a one-step electrodeposition process in molten salt for possible photovoltaic applications. High-purity silicon films can be deposited with tunable film thickness and doping type by varying the electrodeposition conditions. These electrodeposited silicon films show about 40 to 50% of photocurrent density of a commercial silicon wafer by photoelectrochemical measurements and the highest power conversion efficiency is 3.1% as a solar cell. Compared to the conventional manufacturing process for solar grade silicon wafer production, this approach greatly reduces the capital cost and energy consumption, providing a promising strategy for low-cost silicon solar cells production.
关键词: crystalline-silicon solar cells,molten salt,silicon dioxide,photovoltaic applications,electrodeposition
更新于2025-09-12 10:27:22
-
AIP Conference Proceedings [AIP Publishing INTERNATIONAL SYMPOSIUM ON GREEN AND SUSTAINABLE TECHNOLOGY (ISGST2019) - Perak, Malaysia (23–26 April 2019)] INTERNATIONAL SYMPOSIUM ON GREEN AND SUSTAINABLE TECHNOLOGY (ISGST2019) - Summary of the 8th Workshop on Metallization and Interconnection for Crystalline Silicon Solar Cells
摘要: This article gives a summary of the 8th Metallization and Interconnection workshop and attempts to place each contribution in the appropriate context. The field of metallization and interconnection continues to progress at a very fast pace. Several printing techniques can now achieve linewidths below 20 μm. Screen printing is more than ever the dominating metallization technology in the industry, with finger widths of 45 μm in routine mass production and values below 20 μm in the lab. Plating technology is also being improved, particularly through the development of lower cost patterning techniques. Interconnection technology is changing fast, with introduction in mass production of multiwire and shingled cells technologies. New models and characterization techniques are being introduced to study and understand in detail these new interconnection technologies.
关键词: metallization,crystalline silicon solar cells,plating technology,multiwire interconnection,shingled cells,interconnection,screen printing
更新于2025-09-12 10:27:22