- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Fully Spray-Coated Triple-Cation Perovskite Solar Cells
摘要: We use ultrasonic spray-coating to sequentially deposit thin films of tin oxide, a triple-cation perovskite and spiro-OMeTAD, allowing us fabricate perovskite solar cells (PSCs) with a champion reverse scan power conversion efficiency (PCE) of 19.4% on small-area substrates. We show that the use of spray-deposition permits us to rapidly (>80 mm s?1) coat 25 mm × 75 mm substrates that were divided into a series of devices each with an active area of 15.4 mm2, yielding an average PCE of 10.3% and a peak PCE of 16.3%. By connecting seven 15.4 mm2 devices in parallel on a single substrate, we create a device having an effective active area of 1.08 cm2 and a PCE of 12.7%. This work demonstrates the possibility for spray-coating to fabricate high efficiency and low-cost perovskite solar cells at speed.
关键词: spray-coating,ultrasonic spray-coating,perovskite solar cells,scalable deposition,power conversion efficiency
更新于2025-09-23 15:19:57
-
Efficient Organic Solar Cell with 16.88% Efficiency Enabled by Refined Acceptor Crystallization and Morphology with Improved Charge Transfer and Transport Properties
摘要: Single-layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid-state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer-like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development.
关键词: multilength-scaled morphology,nonfullerene acceptors,power conversion efficiency,organic solar cells,2D electron transport
更新于2025-09-23 15:19:57
-
An efficient medium-bandgap nonfullerene acceptor for organic solar cells
摘要: A medium-bandgap acceptor IBCT based on an 2-(1-oxo-1,2-dihydro-3H-benzo[b]cyclopenta[d]thiophen-3-ylidene)malononitrile end unit was developed. IBCT has an optical bandgap of 1.65 eV and afforded a power conversion efficiency of 11.26% and an open-circuit voltage of 1.02 V in single-junction organic solar cells when blending with a wide-bandgap copolymer donor L1. The L1:IBCT solar cell was further used as the front cell in tandem solar cells, yielding a 15.25% efficiency. IBCT is among the best medium-bandgap acceptors.
关键词: organic solar cells,medium-bandgap acceptor,tandem solar cells,power conversion efficiency
更新于2025-09-23 15:19:57
-
Simulation of a Novel Configuration for Luminescent Solar Concentrator Photovoltaic Devices Using Bifacial Silicon Solar Cells
摘要: In this study, a novel configuration for luminescent solar concentrator photovoltaic (LSC PV) devices is presented, with vertically placed bifacial PV solar cells made of mono-crystalline silicon (mono c-Si). This LSC PV device comprises multiple rectangular cuboid lightguides, made of poly (methyl methacrylate) (PMMA), containing Lumogen dyes, in particular, either Lumogen red 305 or orange 240. The bifacial solar cells are located in between these lightguide cubes and can, therefore, receive irradiance at both of their surfaces. The main aim of this study is to theoretically determine the power conversion efficiency (PCE) of five differently configured LSC PV devices. For this purpose, Monte Carlo ray tracing simulations were executed to analyze the irradiance at receiving PV cell surfaces, as well as the optical performance of these LSC PV devices. Five different LSC PV devices, with different geometries and varying dye concentrations, were modeled. To maximize the device efficiency, the bifacial cells were also attached to the back side of the lightguides. The ray tracing simulations resulted in a maximum efficiency of 16.9% under standard test conditions (STC) for a 15 × 15 cm2 LSC PV device, consisting of nine rectangular cuboid 5 × 5 × 1 cm3 PMMA lightguides with 5 ppm orange 240 dye, with 12 vertically positioned 5 × 1 cm2 bifacial cells in between the lightguides and nine 5 × 5 cm2 PV cells attached to the back of the device. If the cells are not applied to the back of this LSC PV device configuration, the maximum PCE will be 2.9% (under STC), where the LSC PV device consists of 25 cubical 1 × 1 × 1 cm3 PMMA lightguides with 110 ppm red 305 dye and 40 vertically oriented bifacial PV cells of 1 × 1 cm2 in between the lightguides. These results show the vast future potential for LSC PV technologies, with a higher performance and efficiency than the common threshold PCE for LSC PV devices of 10%.
关键词: simulation,bifacial solar cells,luminescent solar concentrator photovoltaic (LSC PV),power conversion efficiency (PCE),ray tracing
更新于2025-09-23 15:19:57
-
Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells
摘要: The emergence of the latest generation of small-molecule acceptor (SMA) materials, with Y6 as a typical example, accounts for the surge in device performance for organic solar cells (OSCs). This study proposes two new acceptors named Y6-C2 and Y6-C3, from judicious alteration of alkyl-chains branching positions away from the Y6 backbone. Compared to the Y6, the Y6-C2 exhibits similar optical and electrochemical properties, but better molecular packing and enhanced crystallinity. In contrast, the Y6-C3 shows a significant blue-shift absorption in the solid state relative to the Y6 and Y6-C2. The as-cast PM6:Y6-C2-based OSC yields a higher power conversion efficiency (PCE) of 15.89% than those based on the Y6 (15.24%) and Y6-C3 (13.76%), representing the highest known value for as-cast nonfullerene OSCs. Prominently, the Y6-C2 displays a good compatibility with the PC71BM. Therefore, a ternary OSC device based on PM6:Y6-C2:PC71BM (1.0:1.0:0.2) was produced, and it exhibits an outstanding PCE of 17.06% and an impressive fill factor (FF) of 0.772. Our results improve understanding of the structure-property relationship for state-of-the-art SMAs and demonstrate that modulating the structure of SMAs via fine-tuning of alkyl-chains branching positions is an effective method to enhance their performance.
关键词: power conversion efficiency,fill factor,small molecular acceptor,alkyl-chain branching position,organic solar cell
更新于2025-09-23 15:19:57
-
Mechanically Robust All-Polymer Solar Cells from Narrow Band Gap Acceptors with Hetero-Bridging Atoms
摘要: A series of polymer acceptors PF2-DTC, PF2-DTSi, and PF2-DTGe with identical molecular backbone but different central bridging atoms in tricyclic-fused donor units were developed. In all-PSCs, the PF2-DTSi-based blend film exhibited excellent mechanical robustness with an impressively high PCE of up to 10.77%. Moreover, the flexible solar cell based on this blend retained >90% of its initial PCE after bending and relaxing 1,200 times at a bending radius of ~4 mm.
关键词: Mechanical robustness,All-polymer solar cells,Narrow band gap acceptors,Power conversion efficiency,Hetero-bridging atoms
更新于2025-09-23 15:19:57
-
Polymer Additives for Morphology Control in High-Performance Lead-Reduced Perovskite Solar Cells
摘要: The organic-inorganic halide perovskite solar cells (PSCs) have been rapidly developed in just a few years due to its high power conversion efficiency. However, it still faces some critical issues, one of which is the presence of toxic lead (Pb2+). Recent researches have found that barium (Ba2+) can partially replace the Pb2+ in perovskite structure and achieve promising device performance because of its adequate ionic radius. However, the optimal replacement amount of Ba2+ in perovskite is still limited. In this report, we focus on the MA/FA mixed-cation perovskite and partially substitute Pb2+ with Ba2+. Compared with pure MA system, the best device efficiency can be achieved using higher Ba2+ doped MA/FA mixed-cation perovskite solar cell with efficiency of 16.1% can be realized. We believe this report provides an effective strategy to fabricate high performance lead-reduced PSCs.
关键词: polymer additives,stability,perovskite solar cells,power conversion efficiency
更新于2025-09-23 15:19:57
-
Highly efficient ternary polymer solar cell with two non-fullerene acceptors
摘要: Polymer solar cells (PSCs) based on binary and ternary active layers were built using PBDB-T polymer as donor and two non-fullerene acceptors (MPU2 and MPU3) with different DPP cores and terminal units but different conjugation length. The studied binary PSCs showed PCE (power conversion efficiency) values of 8.22% (PBDB-T:MPU2) and 9.77% (PBDB-T:MPU3). The VOC measured using the MPU3-based acceptor was higher than that obtained using MPU2 – this difference is attributed to a higher LUMO energy level of MPU3. MPU2 and MPU3 present complementary absorptions in the wavelength range where PBDB-T exhibits a poor absorption, thus the combination of these materials offers great potential for the fabrication of ternary PSCs. The solar cell with an optimized ternary layer PBDB-T:MPU2:MPU3 (1:1:1) showed an PCE value of 10.78%, higher than those obtained for the binary devices due to the enhanced of JSC and FF values. And, since the emission of MPU3 partially overlaps with the absorption of MPU2, the transfer of energy from MPU3 to MPU2 can improve the exciton utilization efficiency and achieve enhanced overall power conversion efficiency in this ternary solar cell.
关键词: Polymer donor,Power conversion efficiency,Non-fullerene acceptor,Ternary polymer solar cells
更新于2025-09-23 15:19:57
-
A perovskite solar cell owing very high stabilities and power conversion efficiencies
摘要: Owing to the superior optoelectronic properties of perovskite materials, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has been increased dramatically within several years, but the poor thermal, humidity, and light stability of these PSC devices hinders the progress to their practical application. We obtained an inspiration from two-dimensional (2D) Ruddlesden–Popper perovskite solar cells with good photovoltaic performance and placed the organic-inorganic hybrid perovskite layer inside two fully-inorganic CsPbI3 perovskite layers in the cubic α phase. The middle layer has lower stability than the two outer ones, which protect the middle layer by impeding the organic ions of the organic-inorganic hybrid perovskite middle layer from diffusing outside and causing damage to neighbor CTLs. Water molecules from air are also obstructed from reaching the hybrid perovskite layer. We used 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4) ionic liquid and 3-(decyldimethylammonio) propane-1-sulfonate (DDMAPS) and obtained phase-stable fully-inorganic α phase CsPbI3. The constructed PSCs have extremely high stabilities and high PCEs. After 1000 h of illumination under AM1.5 illumination in air at 60 °C (Humility: ~60%), PSCs with a sandwich structure of three perovskite layers maintain nearly all the original PCE of 21.32%, while those without that only remain 76.63%.
关键词: Stability,Power conversion efficiency,Perovskite solar cell
更新于2025-09-23 15:19:57
-
Enhancement of power conversion efficiency of Al/ZnO/p-Si/Al heterojunction solar cell by modifying morphology of ZnO nanostructure
摘要: This paper proposes a cost-effective sol–gel method for synthesis of ZnO nanostructure to make Al/ZnO/p-Si/Al heterojunction solar cell. Here, crystalline ZnO nanostructure was grown on p-silicon and annealed at 300 °C, 400 °C and 500 °C for application in heterojunction solar cell. The optimum temperature for obtaining uniform crystalline nanostructure was 500 °C, as confirmed from XRD and SEM imaging. As investigated by UV–Vis spectroscopy, the ZnO nanostructure layer exhibited high transmittance in the visible spectrum and has a direct band gap of 3.26–3.28 eV. The power conversion efficiency of Al/ZnO/p-Si/Al solar cell is enhanced from 1.06 to 2.22% due to increase in surface area of ZnO by formation of crystalline nanostructure due to increase of annealing temperature. The optimum value of short-circuit current (Isc) and open-circuit voltage (Voc) was measured using current–voltage (I–V) under AM 1.5 illuminations and found to be 9.97 mA and 460 mV, respectively.
关键词: Power conversion efficiency,Sol–gel method,Annealing temperature,Heterojunction solar cell,ZnO nanostructure
更新于2025-09-23 15:19:57