修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

9 条数据
?? 中文(中国)
  • CaP Coating and Low-Level Laser Therapy to Stimulate Early Bone Formation and Improve Fixation of Rough Threaded Implants

    摘要: Purpose: This study aimed to compare in vivo osteogenesis on rough threaded dental implants with and without calcium phosphate (CaP) coating deposition, alone or in association with low-level laser therapy (LLLT) by gallium aluminum arsenide. Material and Methods: Four groups were studied: G1: implant; G2: implant + CaP coating; G3: implant + LLLT; and G4: implant + CaP coating + LLLT. LLLT was applied for 7 days at the surgical site before and after placing the implant. Topographic characterization was performed before surgery using scanning electron microscopy and energy dispersion spectrophotometry. Bone-implant contact (BIC) was measured after 1, 2, and 6 weeks and reverse torque after 6 weeks. In short periods, G2, G3, and G4 showed significantly greater BIC than G1 (P < 0.05), but no difference in BIC was observed at 6 weeks. However, the values for the removal torque test at 6 weeks were higher in G2 and G4 (P < 0.05). Conclusion: Both CaP coating alone and using LLLT induce cellular stimulation and improve BIC in short-term healing, resulting in higher implant fixation, and should be considered in clinical practice due to their low cost and high effectiveness.

    关键词: osseointegration,biomimetic,laser,dental implant

    更新于2025-09-23 15:23:52

  • Effects of Novel Laser Dental Implant Microtopography on Human Osteoblast Proliferation and Bone Deposition

    摘要: The aim of this study was to compare how two innovative laser titanium surfaces and sandblasted and acid-etched surfaces influence human osteoblast behavior during osteogenesis and the initial phases of bone deposition. Human osteoblasts from human adipose stem cells were sorted by flow cytometric analysis and induced to differentiate. After 40 days, the osteogenic differentiation was detected by alizarin red staining, and the alkaline phosphatase (ALP) was evaluated with western blot (WB) and real-time reverse transcriptase-polymerase chain reaction (RT-PcR) analysis. After confluence, human osteoblasts were cultured onto two different innovative laser-obtained titanium surfaces (L1 and L2) and compared with one sandblasted and acid-etched (SBAE) surface as the control. At different times, human osteoblast behavior was evaluated with cell proliferation viability assay (MTT), scanning electron microscopy (SEM), energy-dispersive x-rays (EDAX), osteogenic markers with RT-PcR, and WB analysis of matrix extracellular phosphoglycoprotein (MEPE), ALP, and osteocalcin (OCN). Results: After cell sorting, the human osteoblasts from human adipose stem cells showed increasing values of ALP mRNA and protein expression. The osteogenic differentiation was confirmed by quantitative alizarin red staining assay. Profilometric and SEM analysis showed relevant differences between SBAE, L1, and L2 specimens. After 20 days of culture onto titanium samples, SEM evaluation showed a small number of human osteoblasts and isolated sites of bone matrix deposition in SBAE specimens. At the same time, on L1 surfaces, only an osteoblast mono-layer with initial bone deposition was found, while on L2 specimens, there was a thick network with flattened large stellate cells, many cellular interconnections with strong titanium adhesion, and a large complex mineralized structure of crystal bone. After 20 days, for all titanium samples, human osteoblasts culturing EDAX analysis showed the absence of impurities and a higher bone matrix deposition in L2 specimens compared with L1 and SBAE samples. Conclusion: The innovative microtopography and nanotopography laser-induced surface showed high biocompatibility with primary human osteoblast cultures and the absence of impurities. The innovative laser texture was capable of influencing the osteogenic process, confirming the critical role of titanium surface characteristics in the cell adhesion and bone deposition during the early phases of osseointegration. The association of human adipose stem cells and titanium surfaces laser-induced with an innovative procedure could generate promising improvements and developments in orthopedics, maxillofacial, and dental implant surgery.

    关键词: laser titanium surface,titanium dental implant,human osteoblasts,bone,osseointegration

    更新于2025-09-19 17:13:59

  • Q-Switch Nd:YAG Laser-Assisted Elimination of Multi-Species Biofilm on Titanium Surfaces

    摘要: (1) Background: The relatively high prevalence of peri-implantitis (PI) and the lack of a standard method for decontamination of the dental implant surface have pushed us to conduct further research in the field. Bacterial biofilms were found to play a primordial role in the etiology of PI. Therefore, the aim is to evaluate the efficacy of a laser-assisted elimination of biofilm protocol in the removal of a multi-species biofilm on titanium surfaces. (2) Methods: In total, 52 titanium discs (grade 4) were used. The study group consisted of 13 titanium disks contaminated with multi-species biofilms and subsequently irradiated with the laser (T + BF + L). The control groups consisted of the following types of titanium disks: 13 contaminated with multi-species biofilms (T + BF), 13 sterile and irradiated (T + L), 13 sterile and untreated (T). Q-Switch Nd:YAG laser Irradiation parameters were the following: energy density equal to 0.597 J/cm2 per pulse, power equal to 270 milliwatt per pulse, 2.4 mm of spot diameter, and 10 Hz repetition rate for pulse duration of six nanoseconds (ns). The laser irradiation was made during 2 s of total time in non-contact and at 0.5 mm away from the titanium disc surface. After treatment, presence of biofilms on the disks was evaluated by staining with crystal violet (CV), which was measured as optical density at six hundred thirty nm, and statistical analyses were done. (3) Results: the optical density values were 0.004 ± 0.004 for the study group T + BF + L, 0.120 ± 0.039 for group T + BF, 0.006 ± 0.003 for group T + L, and 0.007 ± 0.007 for group T. For the study group, laser treatment resulted in a total elimination of the biofilm, with mean values statistically significantly lower than those of contaminated titanium surfaces and similar to those of sterile titanium surfaces. (4) Conclusions: Our irradiation protocol provided a significant elimination of the multi-species biofilm on titanium surfaces. Laser treated titanium surfaces were biofilm-free, similar to the sterile ones.

    关键词: titanium surface,dental implant,biofilm removal,laser,periimplantitis,biofilm

    更新于2025-09-19 17:13:59

  • Er,Cr:YSGG Laser Performance Improves Biological Response on Titanium Surfaces

    摘要: Porphyromonas gingivalis infection is one of the causes of implant failures, which can lead to peri-implantitis. Implant surface roughness is reportedly related strongly to P. gingivalis adhesion, which can lead to peri-implantitis and, later, cell adhesion. Our aim was to evaluate the effects of Er,Cr:YSGG laser on titanium (Ti) disc surfaces and its interaction with bacterial adhesion and fibroblast viability. Ti discs underwent two treatments: autoclaving (control) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser treatment (test). Ti disc surfaces were examined with scanning electronic microscope (SEM), Energy-dispersive spectrometry (EDX), X-ray photoelectron spectroscopy (XPS). The surface roughness same as wettability were also investigated. Fibroblast viability was assessed with the water-soluble tetrazolium 1 (WST-1) test, and osteoblast differentiation was assessed with the alkaline phosphatase (ALP) assay. Bacterial structure and colony formation were detected with scanning electron microscopy and Gram stain. In comparison to control discs, the test discs showed smoother surfaces, with 0.25-μm decrease in surface roughness (p < 0.05); lower P. gingivalis adhesion (p < 0.01); less P. gingivalis colonization (p < 0.05); and increased fibroblast viability and osteoblast differentiation (p < 0.05). Er,Cr:YSGG laser treatment improved disc surfaces by making them slightly smoother, which reduced P. gingivalis adhesion and increased fibroblast viability and osteoblast differentiation. Er,Cr:YSGG laser treatment can be considered a good option for managing peri-implantitis. Further investigations of laser-assisted therapy are necessary for better guidelines in the treatment of peri-implantitis.

    关键词: laser treatment,Er,Cr:YSGG laser,dental implant,Ti discs

    更新于2025-09-19 17:13:59

  • Q-Switch Nd:YAG Laser-Assisted Decontamination of Implant Surface

    摘要: Peri-implantitis (PI) is an inflammatory disease of peri-implant tissues, it represents the most frequent complication of dental implants. Evidence revealed that microorganisms play the chief role in causing PI. The purpose of our study is to evaluate the cleaning of contaminated dental implant surfaces by means of the Q-switch Nd:YAG (Neodymium-doped Yttrium Aluminum Garnet) laser and an increase in temperature at lased implant surfaces during the cleaning process. Seventy-eight implants (titanium grade 4) were used (Euroteknika, Sallanches, France). Thirty-six sterile implants and forty-two contaminated implants were collected from failed clinical implants for different reasons, independent from the study. Thirty-six contaminated implants were partially irradiated by Q-switch Nd:YAG laser (1064 nm). Six other contaminated implants were used for temperature rise evaluation. All laser irradiations were calibrated by means of a powermetter in order to evaluate the effective delivered energy. The irradiation conditions delivered per pulse on the target were effectively: energy density per pulse of 0.597 J/cm2, pick powers density of 56 mW/cm2, 270 mW per pulse with a spot diameter of 2.4 mm, and with repetition rate of 10 Hz for pulse duration of 6 ns. Irradiation was performed during a total time of 2 s in a non-contact mode at a distance of 0.5 mm from implant surfaces. The parameters were chosen according to the results of a theoretical modeling calculation of the Nd:YAG laser fluency on implant surface. Evaluation of contaminants removal showed that the cleaning of the irradiated implant surfaces was statistically similar to those of sterile implants (p-value ≤ 0.05). SEM analysis confirmed that our parameters did not alter the lased surfaces. The increase in temperature generated at lased implant surfaces during cleaning was below 1 °C. According to our findings, Q-switch Nd:YAG laser with short pulse duration in nanoseconds is able to significantly clean contaminated implant surfaces. Irradiation parameters used in our study can be considered safe for periodontal tissue.

    关键词: biofilm,dental implant,peri-implantitis,titanium surfaces decontamination

    更新于2025-09-16 10:30:52

  • Computer-designed selective laser sintering surgical guide and immediate loading dental implants with definitive prosthesis in edentulous patient: A preliminary method

    摘要: Objective: The aim of this study was to analyze a preliminary method of immediately loading dental implants and a definitive prosthesis based on the computer?aided design/computer?aided manufacturing systems, after 2 years of clinical follow?up. Materials and Methods: The study comprised one patient in good general health with edentulous maxilla. Cone beam computer tomography (CBCT) was performed using a radiographic template. The surgical plan was made using the digital imaging and communications in medicine protocol with ImplantViewer (version 1.9, Anne Solutions, Sao Paulo, SP, Brazil), the surgical planning software. These data were used to produce a selective laser sintering surgical template. A maxilla prototype was used to guide the prosthesis technician in producing the prosthesis. Eight dental implants and a definitive prosthesis were installed on the same day. A post?operative CBCT image was fused with the image of the surgical planning to calculate the deviation between the planned and the placed implants positions. Patient was followed for 2 years. Results: On average, the match between the planned and placed angular deviation was within 6.0 ± 3.4° and the difference in coronal deviation was 0.7 ± 0.3 mm. At the end of the follow?up, neither the implant nor the prosthesis was lost. Conclusions: Considering the limited samples number, it was possible to install the dental implants and a definitive prosthesis on the same day with success.

    关键词: immediate loading dental implant,Computer-assisted surgery,dental implants

    更新于2025-09-11 14:15:04

  • Efficacy of Antimicrobial Photodynamic Therapy as an Adjunctive to Mechanical Debridement in the Treatment of Peri-implant Diseases: A Randomized Controlled Clinical Trial

    摘要: Introduction: The purpose of the present study was to assess the clinical effects of antimicrobial photodynamic therapy (PDT) after closed surface scaling in the treatment of peri-implant diseases. Methods: Ten patients with a total of 15 pairs of dental implants, showing clinical and radiographic signs of peri-implant diseases, were included in this study. In each patient, one implant randomly served as control implant and the other served as test implant. The control implants were treated with closed surface scaling only and the test implants received additionally PDT, using light with a wavelength of 630 nm and intensity of 2000 mw/cm2 for 120 seconds after application of photosensitizer in peri-implant sulcus. Clinical parameters were evaluated before and 1.5 and 3 months after treatment. Results: Statistical analysis showed significant differences in probing pocket depth (PPD), clinical attachment loss (CAL), bleeding on probing (BOP), and gingival index (GI) at each time point between the two groups. There were no statistically significant changes with respect to any of the parameters in the control group. Complete resolution of BOP at 3 months was achieved in 100% of test implants. At 1.5 and 3 months, there were significant differences in the mean probing depth and CAL gain measurements at implants in the test group. Conclusion: The present study revealed that adjunctive use of PDT following closed surface scaling could lead to clinical improvement of peri-implant diseases. Further studies are necessary to confirm our results.

    关键词: photodynamic therapy,mechanical debridement,peri-implantitis,dental implant,clinical trial

    更新于2025-09-11 14:15:04

  • Influence of UV irradiation and cold atmospheric pressure plasma on zirconia surfaces: an in vitro study

    摘要: Purpose: To compare the influence of ultraviolet (UV) irradiation and cold atmospheric pressure plasma (CAP) treatment on surface structure, surface chemistry, cytocompatibility, and cell behavior on zirconia in vitro. Materials and Methods: Zirconia samples (TZ-3YSB-E) were treated by UV irradiation, oxygen plasma, or argon plasma for 12 minutes each and compared with the nontreated samples. Surface analysis was conducted using scanning electron microscopy, roughness analysis, and x-ray photoelectron spectroscopy. Cell proliferation, viability, and cell attachment as well as cytotoxicity were evaluated using MC3T3-E1 murine osteoblasts cultivated directly on the zirconia samples. Results: Surface structure and roughness were not affected by the surface treatments. CAP and UV irradiation significantly reduced organic material and increased the surface oxidation on the zirconia samples. Furthermore, CAP and UV treatment significantly decreased the contact angle on the zirconia samples, indicating superhydrophilicity. Cell attachment was significantly increased on oxygen plasma-treated zirconia samples compared with the nontreated samples at all times (P < .001). After 24 and 48 hours, cell proliferation and viability (P < .001) were significantly increased on oxygen plasma-treated samples in comparison with the nontreated, UV-treated, and argon plasma-treated samples. Neither UV nor CAP treatment led to cytotoxicity. Conclusion: In vitro, surface treatment by UV irradiation or CAP causes a significant reduction of organic material, increases the hydrophilicity of zirconia, and improves the conditions for osteoblasts. Results stipulate that treatment of zirconia surfaces with oxygen plasma may favor cell proliferation.

    关键词: UV light,Implant surface,Cold atmospheric pressure plasma,Photofunctionalization,Dental implant,Zirconia

    更新于2025-09-04 15:30:14

  • Porous TiO <sub/>2</sub> Nanotube Arrays for Drug Loading and Their Elution Sensing

    摘要: Porous TiO2 nanotube arrays have been attracting much attention as optical sensing layers and surface layers of dental implants because they are stable in acid and biocompatible. To use them as the optical sensing layers, TiO2 nanotube arrays with various structures were fabricated and obtained an optimized microstructure at 50 V, 50 min and 0.5 wt% of NH4F, 7.4 vol% deionized water in ethylene glycol. TiO2 nanotube arrays which had diameters of ~73.54 nm and lengths of ~3.39 μm showed the best sensing performance. A Ti implant was also anodized at 60 V for 4 hr in an ethylene glycol electrolyte and TiO2 nanotube arrays showed the pore diameter of 156.01 nm and the thickness of 6.87 μm. Recombinant human bone morphogenetic protein-2 (rhBMP-2), isobutylphenyl propionic acid, and sodium alendronate were loaded into the TiO2 nanotube arrays on the surface of the Ti implant. For elution of these drugs, optical thickness changes of 2.4 nm, 3.5 nm and 3.1 nm were respectively observed for about 2.2 hr, 3.6 hr and 3.1 hr. The TiO2 nanotube arrays were useful for drug loading and their elution interferometric sensing.

    关键词: Dental Implant,Porous TiO2 Nanotube Arrays,Interferometric Sensor,Isobutylphenyl Propionic Acid,Drug Delivery,rhBMP-2,Sodium Alendronate

    更新于2025-09-04 15:30:14