修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

11 条数据
?? 中文(中国)
  • Acceptora??donora??acceptor type molecules for high performance organic photovoltaics a?? chemistry and mechanism

    摘要: The study of organic photovoltaics (OPVs) has made great progress in the past decade, mainly attributed to the invention of new active layer materials. Among various types of active layer materials, molecules with A–D–A (acceptor–donor–acceptor) architecture have demonstrated much great success in recent years. Thus, in this review, we will focus on A–D–A molecules used in OPVs from the viewpoint of chemists. Notably, the chemical structure–property relationships of A–D–A molecules will be highlighted and the underlying reasons for their outstanding performance will be discussed. The device stability correlated to A–D–A molecules will also be commented on. Finally, an outlook and challenges for future OPV molecule design and device fabrication to achieve higher performance will be presented.

    关键词: chemical structure–property relationships,device stability,organic photovoltaics,acceptor–donor–acceptor,molecule design

    更新于2025-09-23 15:21:01

  • Reducing photovoltage loss at anode contact of methylammonium-free inverted perovskite solar cells by conjugated polyelectrolyte doping

    摘要: The efficiency of perovskite solar cells (PSCs) developed rapidly in recent years, but the stability still lagged behind. Ion migration effect, especially from the small methylammonium (MA) cations, is a main factor for stability issues and MA-free perovskite is one appreciated pathway to suppress ion migration. In this work, we reveal there is a much lower valence band maximum (VBM) of -5.8 eV for the most studied MA-free perovskite of FA0.83Cs0.17PbI2.7Br0.3, which is much different from traditional perovskite and the huge energy level mismatch between perovskite and hole transport layer (HTL) is a main factor to limit the device performance of MA-free PSCs. It is found doping with conjugated polyelectrolyte of poly[(9,9-bis(3’-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN-Br) in perovskite can significantly promote anode contact and result in better device performance as well as stability of FA0.83Cs0.17PbI2.7Br0.3 based MA-free PSCs in inverted planar structure. The PFN-Br arise the energy position of VBM of perovskite and results in well-matched energy levels between perovskite and HTL of poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine (PTAA). Carrier extraction and transportation are highly encouraged at the surface of PTAA / perovskite, and the corresponding interface recombination is effectively suppressed. As a result, a 60mV increased VOC is achieved, which promotes champion device efficiency to 20.32%. At the same time, the efficient device displays a significant stability under continuous illumination and bias at MPP conditions, which could remain 80% of its initial power conversion efficiency (PCE) under continuous operation under one sun illumination over 500 hours.

    关键词: PFN-Br doping,MA-free perovskite,device stability,energy level alignment,perovskite solar cells

    更新于2025-09-23 15:19:57

  • Perovskite Solar Cells: A Porous Graphitic Carbon based Hole Transporter/Counter Electrode Material Extracted from an Invasive Plant Species Eichhornia Crassipes

    摘要: perovskite solar cells (pScs) composed of organic polymer-based hole-transporting materials (HtMs) are considered to be an important strategy in improving the device performance, to compete with conventional solar cells. Yet the use of such expensive and unstable HTMs, together with hygroscopic perovskite structure remains a concern – an arguable aspect for the prospect of onsite photovoltaic (PV) application. Herein, we have demonstrated the sustainable fabrication of efficient and air-stable PSCs composed of an invasive plant (Eichhornia crassipes) extracted porous graphitic carbon (ec-Gc) which plays a dual role as HTM/counter electrode. The changes in annealing temperature (~450 °C, ~850 °C and ~1000 °C) while extracting the EC-GC, made a significant impact on the degree of graphitization - a remarkable criterion in determining the device performance. Hence, the fabricated champion device-1c: Glass/fto/c-tio2/mp-tio2/cH3nH3pbi3?xclx/EC-GC10@CH3nH3pbi3?x clx/EC-GC10) exhibited a PCE of 8.52%. Surprisingly, the introduced EC-GC10 encapsulated perovskite interfacial layer at the perovskite/HtM interface helps in overcoming the moisture degradation of the hygroscopic perovskite layer in which the same champion device-1c evinced better air stability retaining its efficiency ~94.40% for 1000 hours. We believe that this present work on invasive plant extracted carbon playing a dual role, together as an interfacial layer may pave the way towards a reliable perovskite photovoltaic device at low-cost.

    关键词: Eichhornia crassipes,hole-transporting materials,porous graphitic carbon,perovskite solar cells,device stability

    更新于2025-09-23 15:19:57

  • π–π Stacking Distance and Phase Separation Controlled Efficiency in Stable All-Polymer Solar Cells

    摘要: The morphology of the active layer plays a crucial role in determining device performance and stability for organic solar cells. All-polymer solar cells (All-PSCs), showing robust and stable morphologies, have been proven to give better thermal stability than their fullerene counterparts. However, outstanding thermal stability is not always the case for polymer blends, and the limiting factors responsible for the poor thermal stability in some All-PSCs, and how to obtain higher efficiency without losing stability, still remain unclear. By studying the morphology of poly [2,3-bis (3-octyloxyphenyl) quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl](TQ1)/poly[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl]] (PCE10)/PNDI-T10 blend systems, we found that the rearranged molecular packing structure and phase separation were mainly responsible for the poor thermal stability in devices containing PCE10. The TQ1/PNDI-T10 devices exhibited an improved PCE with a decreased π–π stacking distance after thermal annealing; PCE10/PNDI-T10 devices showed a better pristine PCE, however, thermal annealing induced the increased π–π stacking distance and thus inferior hole conductivity, leading to a decreased PCE. Thus, a maximum PCE could be achieved in a TQ1/PCE10/PNDI-T10 (1/1/1) ternary system after thermal annealing resulting from their favorable molecular interaction and the trade-off of molecular packing structure variations between TQ1 and PCE10. This indicates that a route to efficient and thermal stable All-PSCs can be achieved in a ternary blend by using material with excellent pristine efficiency, combined with another material showing improved efficiency under thermal annealing.

    关键词: morphology,device stability,crystallinity,all-polymer solar cells,thermal annealing,molecular packing structure

    更新于2025-09-19 17:13:59

  • A relatively wide-bandgap and air-stable donor polymer for fabrication of efficient semitransparent and tandem organic photovoltaics

    摘要: Organic photovoltaics (OPVs) have attracted tremendous attention in the field of thin-film solar cells due to their wide range of applications, especially for semitransparent devices. Here, we synthesize a dithiaindacenone-thiophene-benzothiadiazole-thiophene alternating donor copolymer named poly{[2,7-(5,5-didecyl-5H-1,8-dithia-as-indacenone)]-alt-[5,5-(5′,6′-dioctyloxy-4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]} (PDTIDTBT), which shows a relatively wide bandgap of 1.82 eV, good mobility, and high transmittance and ambient stability. In this work, we fabricate an OPV device using monolayer graphene as top electrode. Due to the stability of PDTIDTBT in air and water, we use a wet transfer technique for graphene to fabricate semitransparent OPVs. We demonstrate OPVs based on the PDTIDTBT:Phenyl-C61/71-butyric acid methyl ester (PCBM) blend with maximum power conversion efficiencies (PCEs) of 6.1 and 4.75% using silver and graphene top electrodes, respectively. Our graphene-based device shows a high average visible transmittance (AVT) of 55%, indicating the potential of PDTIDTBT for window application and tandem devices. Therefore, we also demonstrate tandem devices using the PDTIDTBT:Phenyl-C61-butyric acid methyl ester (PC60BM) blend in both series and parallel connections with average PCEs of 7.3 and 7.95%, respectively. We also achieve a good average PCE of 8.26% with an average open circuit voltage (Voc) of 1.79 V for 2-terminal tandem OPVs using this blend. Based on tandem design, an OPV with PCE of 6.45% and AVT of 38% is demonstrated. Moreover, our devices show improved shelf life and ultraviolet (UV) stability (using CdSe/ZnS core shell quantum dots [QDs]) in ambient with 45% relative humidity.

    关键词: PDTIDTBT,semitransparent device,stability,efficiency,organic solar cell

    更新于2025-09-19 17:13:59

  • Bulk recrystallization for efficient mixed-cation mixed-halide perovskite solar cells

    摘要: Today, the use of mixed-cation lead mixed-halide perovskite with a slight excess of lead iodide (PbI2) demonstrates the highest device performances in the literature. However, the presence of excess PbI2 in the film poses long-term stability concerns. Here, we propose a facile bulk recrystallization process by applying formadinium chloride (FACl) on perovskite to remove excess PbI2 in the formed crystal. We are able to demonstrate bulk recrystallization, proved and observed by the Grazing incidence XRD to analyze the crystal structure as a function of depth profiling. The reconstructed crystal displays improved optoelectronic qualities with reduced interfacial recombination as well as enhanced device stability. When measured under AM 1.5G spectral conditions the optimized champion device reached a maximum power conversion efficiency (PCE) of 20.2%.

    关键词: bulk recrystallization,optoelectronic qualities,FACl,perovskite solar cells,PbI2,device stability

    更新于2025-09-16 10:30:52

  • Degradation of OLED performance by exposure to UV irradiation

    摘要: Organic light-emitting diode (OLED) displays are highly susceptible to the harsh environmental conditions found outdoors, like exposure to direct sunlight as well as UV radiation and storage temperature, resulting in a loss of luminance and lifespan, pixel shrinkage, and permanent damage and/or malfunction of the panel. Here, we fabricated top emission OLEDs (TEOLEDs) using Yb : LiF (1 : 1, 2 nm)/Ag : Mg (10 : 1, 16 nm) and Mg : LiF (1 : 1, 2 nm)/Ag : Mg (10 : 1, 16 nm) cathode units and the performances of the devices were investigated by subjecting them to UV radiation. A fabricated red TEOLED (control device), employing a standard Mg : LiF (1 : 1, 2 nm) electron injection layer (EIL) and an Ag : Mg (16 nm) cathode, showed a rapid decrease in luminance and a fast increase in driving voltage at 10 mA cm?2 over time after UV irradiation for 300 h. However, a cathode unit comprising a Yb : LiF (1 : 1, 2 nm) EIL and an Ag : Mg (10 : 1, 16 nm) cathode showed no loss of luminance or increase in driving voltage at 10 mA cm?2 over time after UV irradiation for 300 h. Therefore, we investigated the changes occurring in both cathode units due to UV irradiation using the lift-out FIB-TEM technique and EDS mapping. With UV irradiation for 300 h, Ag atoms migrated toward the center of the cathode, Mg atoms migrated toward the CPL, and no Mg atoms were observed in the EIL area. In contrast, we observed (i) no substantial migration of Ag atoms and they were located at the center of the cathode, (ii) no migration of Mg atoms toward the CPL layer, and (iii) no movement of Yb atoms after UV irradiation. Furthermore, the UV irradiated red TEOLED with an Mg : LiF (1 : 1, 2 nm) EIL showed (i) deterioration in electron injection into the emissive layer (EML) and an increase in the EIL/metal interface resistance, and (ii) a remarkable shift of the J–V curve to the higher voltage side, while almost no such changes were observed in the TEOLD with a Yb : LiF (1 : 1, 2 nm) EIL. Also, an almost identical RGB pixel emitting area was noticed in the Yb : LiF (1 : 1, 2 nm) based devices after UV irradiation for 300 h. These results suggest that Yb could become a good candidate for the cathode unit, providing better device stability against harsh environmental conditions as well as excellent electron injection properties.

    关键词: electron injection,TEOLEDs,device stability,Yb : LiF,Mg : LiF,OLED,cathode unit,UV irradiation

    更新于2025-09-16 10:30:52

  • Fluorinated fulleropyrrolidine as universal electron transport material for organic-inorganic and all-inorganic perovskite solar cells

    摘要: [6,6]-Phenyl-C61-butyric acid methylester (PC61BM) has been widely used as electron transport material (ETM) for both organic-inorganic hybrid and all inorganic perovskite solar cells (PeSCs) with inverted structure. However, PC61BM still remains to be improved due to its low electrical conductivity and inferior passivation effect towards perovskite. In this work, we synthesize two perfluorophenyl-substituted fulleropyrrolidines, 2-(perfluorophenyl)-5-phenyl-C60-fulleropyrrolidine (FP-i) and 2,5-bis-(perfluorophenyl)-C60-fulleropyrrolidine (FP-ii) via a modified 1,3-dipolar cycloaddition reaction. FP-i and FP-ii are introduced into inverted PeSCs based on organic-inorganic hybrid and all inorganic perovskites (CH3NH3PbCl3-xIx and CsPbI2Br) as ETMs. The PeSCs based on FP-i and FP-ii display good photovoltaic performance and device stability, which are superior or comparable to those with PC61BM. The mechanism studies reveal that FP-i and FP-ii possess higher electrical conductivity, more significant passivation capacity and enhanced hydrophobicity but slightly lower low unoccupied molecular orbital (LUMO) levels. These results suggest that FP-i and FP-ii are universal ETMs for both organic-inorganic hybrid and all inorganic PeSCs, which are better or comparable to conventional ETM of PC61BM.

    关键词: Inverted perovskite solar cell,Fullerene derivative,Passivation effect,Device stability,Electron transporting layer

    更新于2025-09-16 10:30:52

  • Post-functionalization of polyvinylcarbazoles: An open route towards hole transporting materials for perovskite solar cells

    摘要: We report on the potential of tuning poly(9-vinylcarbazole) (PVK) properties through functionalization for an application as hole transport material (HTM) for perovskite solar cells (PSCs). The synthesized PVK-based polymers were substituted with moieties of interest to improve the solubility, the charge transport properties, or to tune energy levels. Bis(4-methoxyphenyl)amine moieties were found to improve the hole mobility and to increase the HOMO level of the PVK. Therefore, PSCs employing PVK-[N(PhOCH3)2]2 as HTM exhibited a best PCE of 16.7%. Compared to spiro-OMeTAD, first studies have shown that PVK-[N(PhOCH3)2]2 could extend PSC lifetime.

    关键词: Hole mobility,Hole-transporting materials,Device stability,Perovskite solar cells,Polyvinylcarbazoles

    更新于2025-09-11 14:15:04

  • Exciton-Induced Degradation of Hole Transport Layers and Its Effect on the Efficiency and Stability of Phosphorescent Organic Light-Emitting Devices

    摘要: The effect of exciton-induced degradation of hole transport layers (HTLs) and its influence on efficiency and stability of phosphorescent organic light emitting devices (PhOLEDs) are investigated. In order to be able to isolate and study the effect of excitons on HTLs, UV illumination as a means to expose them to exciton stress is used. Results reveal that exciton stress of only the HTLs can lead to a significant deterioration in the electroluminescence external quantum efficiency and stability of PhOLEDs, revealing the detrimental role of exciton-induced degradation of HTLs in limiting the device performance. The creation of quenchers in HTLs and the diffusion of excitons from the HTL to the EML appear to play roles in this degradation mechanism. Observations reveal that exciton-induced degradation of HTLs more strongly impacts PhOLEDs than their fluorescent counterparts, revealing the more critical role that HTLs play in influencing their stability and pointing to the role of triplet excitons in this phenomenon. Observations also suggest that increasing the exciton stability of HTLs or reducing exciton lifetime in them can help increase device stability. The findings uncover a new degradation mode in PhOLEDs and provide key insights for device design for realizing better performance and stability.

    关键词: electroluminescence efficiency,device stability,phosphorescent OLEDs,exciton-induced degradation,hole transport layers

    更新于2025-09-04 15:30:14