- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
The effect of cut depth and distribution for abrasives on wafer surface morphology in diamond wire sawing of PV polycrystalline silicon
摘要: Due to the existence of an acid etch resistant thin amorphous silicon layer over the smooth grooves of the diamond wire sawing polycrystalline silicon wafer surface, the anti-re?ection e?ect is usually not ideal using the mature acidic texturization. The amorphous silicon layer will be produced on the machined surface by material ductile removal. Therefore, during the process of cutting photovoltaic polycrystalline silicon wafers, the material removed in the brittle way is expected and the surface topography of the wafers formed with the brittle fracture is better for the texture fabricating. In this paper, a mathematical model considering the in?uences of process parameters and wire saw parameters was developed based on indentation fracture mechanics. The variations of cutting groove pro?le formed by di?erent material removal modes were also included. The e?ect of abrasives distributed on the wire saw on material removal and surface formation of polysilicon was analyzed. The results showed that most of abrasives removed material with ductile removal mode, however, the volume of the material removed by abrasive in ductile mode is less than 10% of the total removal volume. Brittle fracture removal mode was still the major way of material removal in diamond wire sawing. With the same ratio of the feed rate and wire speed, the faster feed rate and wire speed will not only improve the cutting e?ciency, but also is easier to obtain a brittle fracture surface. There is a critical angle θc for the distribution of abrasives on the wire saw surface. Only when the position angle of the abrasive removing material in brittle mode is less than θc, the brittle fracture can be formed on the wafers surface.
关键词: Diamond wire sawing,Depth of cut,Material removal mode,Photovoltaic polycrystalline silicon
更新于2025-09-23 15:23:52
-
Characterization of the Diamond Wire Sawing Process for Monocrystalline Silicon by Raman Spectroscopy and SIREX Polarimetry
摘要: A detailed approach to evaluate the sub-surface damage of diamond wire-sawn monocrystalline silicon wafers relating to the sawing process is presented. Residual stresses, the presence of amorphous silicon and microcracks are considered and related to diamond wire velocity and cutting ability. In particular, the degree of amorphization of the wafer surface is analyzed, as it may affect the etching performance (texturing) during solar cell manufacture. Raman spectroscopy and Scanning Infrared Stress Explorer (SIREX) measurements are used independently as non-destructive, contactless optical characterization methods to provide stress imaging with high spatial resolution. Raman mappings show that amorphous silicon layers can occur inhomogeneously across the surface of diamond wire-sawn wafers. The Raman and SIREX results reveal a connection between a higher fraction of the amorphous phase, a more inhomogeneous stress distribution and a lower peak maximum of the stress difference on wafers, depending on both the wire wear and the wire velocity. SIREX line scans of the in-plane difference of the principal stress components ?σ taken across the sawing grooves show significant differences in magnitude and periodicity. Furthermore, the results are compared with the microcrack depth from the same investigation areas. The possibility to optimize the diamond wire sawing processes by analyzing the sub-surface stress of the wafers is offered by complementary use of both Raman and SIREX measurements.
关键词: SIREX,wire cutting ability,silicon,microcrack depth,diamond wire,amorphous phase,wire velocity,Raman,stress imaging,stress-induced birefringence
更新于2025-09-23 15:22:29
-
Development of additive-assisted Ag-MACE for multicrystalline black Si solar cells
摘要: The uniform distribution of silver nanoparticles on the surfaces of diamond-wire sawn multicrystalline silicon (mc-Si) is critical for the texturing of mc-Si by the Ag metal-assisted chemical etching method (Ag-MACE). In this study, an additive containing alkylphenol polyoxyethylene is developed to improve the Ag-MACE process. It enables an even deposition of the silver nanoparticles over the surface of the silicon wafer, so that the entire wafer surface can be uniformly textured with nanostructures. The experimental results show that the additive improves the appearance and performance of solar cells, including their reflectivity, efficiency, internal quantum efficiency and external quantum efficiency. Mass-produced mc-Si solar cells textured using Ag-MACE with this additive have achieved a maximum efficiency of 19.51%, compared with an efficiency of 19.16% for cells fabricated without the additive.
关键词: metal-assisted chemical etching,additive,diamond wire saw,uniform textures,solar cell,multicrystalline silicon
更新于2025-09-23 15:19:57