- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Aqueous Sn-S Complex Derived Electron Selective Layer for Perovskite Solar Cells
摘要: A novel aqueous Sn-S complex solution was applied as precursor to fabricate SnO2 electron selective layers (ESLs) for the hybrid perovskite solar cells (PSCs). The tin and sulfur powder were directly dissolved in a (NH4)2S water solution to form Sn-S precursor. After depositon and annealing, the SnO2 film was formed, presenting as a low cost and enviromental friendly method for preparation of ESL. The films showed excellent transmittance at visible wavelength range. Moreover, the method exhibited high compatibility for doping using Cu, Cd, Li, and Zn elements. Zn doping (0.05 M) in the as-prepared SnO2 ESL significantly improved perovskite solar cells (PSCs) performance. The highest PCE of 13.17% was achived with 15% enhancement compared to that of undoped SnO2 ESL samples. TiCl4 modifications on SnO2 film improved photovoltaic performance to 14.45%, but resulted in the poor long-term stability, around 80% more degredation than that of PSCs based on Zn-doped SnO2 films.
关键词: SnO2,Sn-S complex,aqueous solution,perovskite solar cell,electron selective layer
更新于2025-09-23 15:21:01
-
Investigation of Well-Defined Pinholes in TiO2 Electron Selective Layers Used in Planar Heterojunction Perovskite Solar Cells
摘要: The recently introduced perovskite solar cell (PSC) technology is a promising candidate for providing low-cost energy for future demands. However, one major concern with the technology can be traced back to morphological defects in the electron selective layer (ESL), which deteriorates the solar cell performance. Pinholes in the ESL may lead to an increased surface recombination rate for holes, if the perovskite absorber layer is in contact with the fluorine-doped tin oxide (FTO) substrate via the pinholes. In this work, we used sol-gel-derived mesoporous TiO2 thin films prepared by block co-polymer templating in combination with dip coating as a model system for investigating the effect of ESL pinholes on the photovoltaic performance of planar heterojunction PSCs. We studied TiO2 films with different porosities and film thicknesses, and observed that the induced pinholes only had a minor impact on the device performance. This suggests that having narrow pinholes with a diameter of about 10 nm in the ESL is in fact not detrimental for the device performance and can even, to some extent improve their performance. A probable reason for this is that the narrow pores in the ordered structure do not allow the perovskite crystals to form interconnected pathways to the underlying FTO substrate. However, for ultrathin (~20 nm) porous layers, an incomplete ESL surface coverage of the FTO layer will further deteriorate the device performance.
关键词: electron selective layer,pinhole,perovskite solar cell,dip coating,evaporation-induced self-assembly,mesoporous TiO2
更新于2025-09-16 10:30:52