- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- 2018
- 2016
- rural electrification
- optimised renewable energy utilisation
- power sharing
- micro grid
- community development
- grid interconnection
- Battery energy storage systems
- techno-economic modeling
- photovoltaics
- net-metering
- Electrical Engineering and Automation
- New Energy Science and Engineering
- Optoelectronic Information Science and Engineering
- Amrita School of Engineering
- State Grid Sichuan Electric Power Research Institute
- Aristotle University of Thessaloniki
- The University of Texas at Austin
- Northern (Arctic) Federal University named after M.V. Lomonosov
- Univ. Grenoble Alpes, Grenoble INP
- Dracula Technologies
- Majmaah University
- Ritsumeikan University
- KNIT
-
Computational Study of Perovskite Structured CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> and CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>
摘要: Nowadays, Hybrid Perovskite materials perform a major role in solar cell industry due to their superior power conversion ability. CH3NH3PbI3 is the prominent material in hybrid perovskite, where they comprised with advanced photovoltaic properties. But considering the toxicity, it’s more important to observe the role of metal atom in hybrid perovskite. Therefore, this research is basically focused on the objective of figuring out the fundamental properties of CH3NH3PbI3 and CH3NH3SnI3 with the idea of replacing Pb to Sn in future. Ab-Initio Simulation has been used throughout this research along with basic density function theories (DFT) like Exchange correlation functional, Local-density approximation of Kohn-Sham theory. Moreover, the research was also focused upon the Energy band gap variation, crystallographic orientations, density of states in P, S orbitals of cubic and tetragonal phases in CH3NH3PbI3 and CH3NH3SnI3.
关键词: Energy Bands,Methyl ammonium Tin Iodide perovskite,Density Function Theory,Methyl ammonium lead Iodide,Perovskite structure
更新于2025-09-23 15:23:52
-
Evaluation of Radiation Characteristics of Xenon Short Arc Lamp by Numerical Simulation; 数値解析を用いたキセノンショートアークランプの放射特性評価;
摘要: In this study, an arc numerical simulation model of xenon short arc lamp was developed by modifying numerical simulation model of free burning arc. The influence of the difference in the filling gas pressure on the energy consumed by the lamp voltage, current and gas radiation was investigated. It became clear that the radiation power of the xenon arc lamp strongly depends on the filling gas pressure. Furthermore, when the lamp is turned on with constant power, the radiation efficiency is determined by the balance between the radiation power density and the high temperature arc volume, and as a result, it is clear that the maximum value exists of the radiation power fraction.
关键词: Numerical Simulation,Xenon Arc Lamp,Radiation,Xenon,Energy Balance
更新于2025-09-23 15:23:52
-
Atomically Precise Bimetallic Nanoclusters as Photosensitizers in Photoelectrochemical Cells
摘要: The atomically precise bimetallic nanocluster, Au24Ag20(PhCC)20(SPy)4Cl2 (1), is for the first time employed as a stable photosensitizer for photoelectrochemical applications. The sensitization of TiO2 nanotube arrays (TNA) with 1 greatly enhances the light harvest ability of the composite, as 1 shows high molar-extinction-coefficient in the UV-Vis region. Compared to a more standard Au25(SG)18 -TNA (2-TNA, SG: Glutathione), 1-TNA shows a much better stability under illumination both in neutral and basic conditions. The precise composition of the photosensitizers enables a direct comparison of the sensitization ability between 1 and 2. With the same cluster loading, the photocurrent produced by 1-TNA is 15 times larger than 2-TNA. The superior performance of 1-TNA over 2-TNA is attributed not only to the higher light absorption ability of 1, but also to the higher charge-separation efficiency. Besides, a ligand effect on the stability of the photoelectrode and charge-transfer between the NCs and the semiconductor is revealed. Our work paves the way to study the role of metal nanoclusters as photosensitizers at the atomic level, which is essential for the design of better material for light energy conversion.
关键词: Energy Conversion,Bimetallic Nanoclusters,Photosensitizers,Nanostructured Materials,Photoelectrochemical Cells
更新于2025-09-23 15:23:52
-
Why environmental dust influences solar energy harvesting
摘要: In order to minimize dust effects on optical surfaces related to the solar energy harvesting, adhesion between the active surface of energy harvesting device and the dust particles needs to be lowered. Consequently, the pinning force for the dust particles reduces, and the dust particles can be removed via creating the self‐cleaning effect. The wetting state of the active surface becomes critical towards reducing the pinning force. In this case, hydrophobic surfaces remain favorable reducing the dust adhesion on the surfaces. In the present perspective, characteristics of the environmental dust particles and their effects in humid air ambient are presented. The methods for dust removal from the surfaces and the optical transmittance reduction by the dust particles are discussed. The challenges and future perspectives of surface texturing towards achieving hydrophobicity and optical transmittance are also introduced.
关键词: environmental dust,solar energy harvesting,optical transmittance
更新于2025-09-23 15:23:52
-
Harnessing the synergy between upconverting nanoparticles and lanthanide complexes in a multi-wavelength responsive hybrid system
摘要: We prepared a hybrid system composed of a continuous film of dinuclear lanthanide complex [Ln2bpm(tfaa)6] (Ln = Tb or Eu) and upconverting nanoparticles (UCNPs) using a straightforward drop-cast methodology. The system displayed visible emission under near-infrared (NIR) excitation, simultaneously stemming from sub-10-nm UCNPs and [Ln2] complexes, the latter species being otherwise directly excitable only using UV-blue radiation. In light of the results of steady-state – including power-dependent – and time-resolved optical measurements, we identified the radiative, primarily ligand-mediated nature of the energy transfer from Tm3+ ions in the UCNPs-to-Ln3+ ions in the complexes. Hyperspectral mapping and electron microscopy observations of the surface of the hybrid system confirmed the continuous and concomitant distribution of UCNPs and lanthanide complexes over the extensive composite films. Key features of the hybrid system are the simultaneous UV-blue and NIR light harvesting capabilities and their ease of preparation. These traits render the presented hybrid system a formidable candidate for the development of photoactivated devices capable to operate under multiple excitation wavelength and to transduce the absorbed light into narrow, well-defined spectral regions.
关键词: hybrid system,complex,energy transfer,lanthanide,films,upconverting nanoparticles,hyperspectral imaging
更新于2025-09-23 15:23:52
-
Theoretical and experimental insights into the effects of oxygen-containing species within CNTs towards triiodide reduction
摘要: Heteroatom-doped micro/nano-structured carbon materials feature unique superiorities for replacement of noble metal Pt counter electrode (CE) in dye-sensitized solar cells. Nevertheless, the effects of oxygen-containing species on/within carbon matrix on its electrocatalytic activity are seldomly considered and concerned, which will be hindered by a trade off between oxygen defects and conductivity. Herein, we present activated carbon nanotubes (P-CNTs) with abundant active edge sites and oxygen species for simultaneous achieving the activation of sidewalls and open ends. Also, the positive effects of oxygen species are decoupled by experimental data together with theoretical analysis. When capitalizing on the P-CNTs as the CE of DSSCs, the device delivers a high power conversion efficiency of 8.35% and an outstanding electrochemical stability, outperforming that of Pt reference (8.04%). The density functional theory calculation reveals that compared with the carboxylic groups, the hydroxyl groups and carbonyl groups on the surface of CNTs can greatly reduce the ionization energy of reaction, accelerate the electron transfer from external circuit to triiodide, thus being responsible for an enhanced electrocatalytic performance. This work demonstrates that a certain amount of oxygen atoms within carbon materials is also indispensable for the improvement in the reactivity of the triiodide.
关键词: Counter electrodes,Triiodide reduction,Defective carbon nanotubes,Ionization energy,Electrochemical stability,Oxygen species
更新于2025-09-23 15:23:52
-
Machine Learning of Two-Dimensional Spectroscopic Data
摘要: Two-dimensional electronic spectroscopy has become one of the main experimental tools for analyzing the dynamics of excitonic energy transfer in large molecular complexes. Simplified theoretical models are usually employed to extract model parameters from the experimental spectral data. Here we show that computationally expensive but exact theoretical methods encoded into a neural network can be used to extract model parameters and infer structural information such as dipole orientation from two dimensional electronic spectra (2DES) or reversely, to produce 2DES from model parameters. We propose to use machine learning as a tool to predict unknown parameters in the models underlying recorded spectra and as a way to encode computationally expensive numerical methods into efficient prediction tools. We showcase the use of a trained neural network to efficiently compute disordered averaged spectra and demonstrate that disorder averaging has non-trivial effects for polarization controlled 2DES.
关键词: Neural Networks,excitonic energy transfer,light-harvesting complexes,ML numerical methods
更新于2025-09-23 15:23:52
-
An Eco-friendly Flexible Piezoelectric Energy Harvester That Delivers High Output Performance is Based on Lead-Free MASnI3 Films and MASnI3-PVDF Composite Films
摘要: An environmentally-friendly lead-free methylammonium tin iodide (MASnI3) perovskite is successfully synthesized using a facile approach of an antisolvent-assisted collision technique under room ambient conditions, which results stability within 24 h under ambient room conditions. The phase transition of MASnI3 from tetragonal to cubic is first observed at ~ 30 °C. Polycrystalline MASnI3 films reveal a high dielectric constant of ~ 65 at 100 kHz, a low-leakage current density of 7 × 10-7 A cm-2 at 50 kV cm-1, well-developed P-E hysteresis loops, and a high piezoelectric coefficient (d33) of 20.8 pm V-1. The MASnI3 piezoelectric energy nanogenerator (PENG) shows an output voltage of ~ 3.8 V and an output current density of 0.35 μA cm-2. To enhance the piezoelectric output performance, the MASnI3 films are composited with an environmentally friendly PVDF polymer that had a porous structure. The PVDF-MASnI3 composite based-PENG reveals a maximum output voltage of ~ 12.0 V and current density of ~ 4.0 μA cm-2. A green light-emitting diode (LED) using the PVDF-MASnI3 PENGs is instantly lighted without need of a storage device, and long-term stability of the composite PENGs is validated for 90 days. This simple and cost-effective solution process is feasible for the fabrication of large-scale, high-performance, and environmental-friendly PENGs based on lead-free organic-inorganic perovskites to extensively implicate in medical and biomechanical applications.
关键词: Dielectric property,Lead-free MASnI3,PVDF-MASnI3 composite PENGs,Piezoelectric energy,Antisolvent-assisted collision technique
更新于2025-09-23 15:23:52
-
Structural, photoluminescence and magnetic properties of Cu-doped SnO2 nanoparticles co-doped with Co
摘要: Co doped Sn0.98Cu0.02O2 nanoparticles have been synthesized by co-precipitation method. The prepared nanoparticles were characterized by X-ray diffraction, scanning electron microscope (SEM), transmission electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and magnetic measurements. The observed tetragonal rutile structure confirmed by XRD patterns was not altered by Co-doping and the value of average crystallite size lies within 8–14 nm. The formation of high density defect states and the new phases of Co and Sn were responsible for the reduction of energy gap (Eg) with Co-doping; Eg varied between 3.12 and 3.58 eV. The tuning of band gap and luminescence properties by Co-doping suggested that Co = 4% doped sample is a promising material for selective coatings for solar cells; use as antireflective coating materials, and for fabrication of optoelectronic devices. FTIR spectrum has been used to authenticate the formation of Sn–O bond and the existence of Co in Sn–Cu–O. The promotion of higher local disorders and the oxygen-related defects during growth process of SnO2 nanoparticles at Co = 4% is responsible for the higher UV/violet/blue band photoluminescence emission intensity. The overlapping between bound magnetic polarons (BMP) by Co-doping induced the room temperature ferromagnetism. The existence of high density charge carriers and oxygen vacancies at Co = 4% sample might be responsible for highest magnitude of ferromagnetism. The noticed suppression of RTFM at Co = 6% may be due to the enhanced antiferromagnetic interaction between neighbouring Co–Co ion.
关键词: Photoluminescence,SnO2 nanoparticles,XRD,Energy gap,Magnetic properties
更新于2025-09-23 15:23:52
-
Photoelectrochemical hydrogen production from water splitting using heterostructured nanowire arrays of Bi2O3/BiAl oxides as a photocathode
摘要: To date, most metal oxide-based photocathodes used in photoelectrochemical cells for water splitting contain copper cations in its composition, which can be reduced to metal Cu under cathodic bias leading to deactivation of the photoelectrode. Here, a Cu-free photocathode composed by a ternary heterostructure of Bi2O3/Al2Bi24O39/Al2Bi48O75 nanowires is reported with a narrow band gap energy (1.83 eV) and suitable conduction band edge potential (?0.98 VRHE) for water reduction to hydrogen. Photoelectrochemical measurements display that the highest photocurrent density of ?4.85 mA cm?2 at 0 VRHE under simulated sunlight is achieved by tuning the Bi:Al molar ratio of photocathode to 21:1. The photocurrent onset potential of the Bi2O3/BiAl oxides photoelectrode was estimated to be 0.57 VRHE at pH 7, which is comparable to that of silicon. Controlled potential photoelectrolysis at 0 VRHE showed a stable photocurrent of about ?2 mA cm?2 for 2 h of continuous operation. The H2 measured at this time was 696 μmol cm?2, which corresponds to a Faradaic efficiency of 93%. Finally, this work gives a new generation of Cu-free photocathodes and demonstrates a promising future of BiAl oxides in constructing photoelectrochemical devices for water splitting.
关键词: Oxides,Solar energy,PEC cells,Water reduction,Spray pyrolysis,Heterojunction
更新于2025-09-23 15:23:52