- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- 2018
- 2016
- rural electrification
- optimised renewable energy utilisation
- power sharing
- micro grid
- community development
- grid interconnection
- Battery energy storage systems
- techno-economic modeling
- photovoltaics
- net-metering
- Electrical Engineering and Automation
- New Energy Science and Engineering
- Optoelectronic Information Science and Engineering
- Amrita School of Engineering
- State Grid Sichuan Electric Power Research Institute
- Aristotle University of Thessaloniki
- The University of Texas at Austin
- Northern (Arctic) Federal University named after M.V. Lomonosov
- Univ. Grenoble Alpes, Grenoble INP
- Dracula Technologies
- Majmaah University
- Ritsumeikan University
- KNIT
-
Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics
摘要: SnO2 doped Sr0.6(Na0.5Bi0.5)0.4TiO3 (NBT-ST) ceramics were prepared by a conventional solid-state reaction method. Their phase structures, microstructures and electrical properties were characterized in details. It is found that SnO2 doping could increase the lattice parameters, density and average grain size. A suitable amount of SnO2 can improve dielectric properties, and affect the relaxor behavior of the NBT-ST matrix, thereby it can effectively reduce the energy loss and optimize the energy storage performance. Furthermore, the energy storage properties are improved with SnO2 doping. Especially, the 1 at. % SnO2 doped NBT-ST achieves a high recoverable energy density of 2.35 J/cm3, which is mainly attributed to large maximum polarization of 43.2 μC/cm2, small remnant polarization of 5.83 μC/cm2 and high breakdown strength of 180 kV/cm. Also, relatively good temperature stability for dielectric performance and excellent fatigue resistance are observed in this composition. These properties are attractive for lead-free energy storage applications.
关键词: SnO2,Lead-free,Dielectric,Energy storage,NBT-ST
更新于2025-11-14 17:28:48
-
Highly Efficient and Durable Piezoelectric Nanogenerator and Photo-Power Cell Based on CTAB-Modified-Montmorillonite Incorporated PVDF Film
摘要: Herein, we have successfully designed two eco-friendly, biocompatible and cost-effective devices i.e. a piezoelectric nanogenerator (PENG) and a self-charged photo-power cell (PPC) by developing a multifunctional CTAB modified montmorillonite (MMT) incorporated poly(vinylidene fluoride) (PVDF) thin film with large electroactive β crystallites and dielectric properties. Incorporation of CTAB modified MMT in PVDF leads to nucleation of piezoelectric β crystallite (F(β)) ~ 91% as well as the dielectric constant ~ 48 at 3 mass% doping of CTAB-MMT. The enrichment of the electroactive β phase crystallization and high dielectric constant pilot to a good piezoelectricity ( d33) ~ 62.5 pC/N at 50 Hz of the thin film. Our CTAB-MMT/PVDF based PENG (CMPENG) with superior piezoelectricity shows high output power generation with power density ~ 50.72 mW/cm3 under periodic finger impartation and having ability to charge up a 1μF capacitor up to 2.4 V within 14 seconds under gentle finger impartation. The CMPENG also have the potential to glow up commercially available 26 blue light-emitting diodes (LEDs) connected in series. The self-charged PPC has been designed with the thin film in association with MnO2-MWNT/PVP/H3PO4. Our PPC is able to generate supercilious output voltage ~ 1.38 V and short circuit current ~ 3.7 mA/cm2under light illumination with specific areal capacitance and energy storage efficiency ~ 1501 F/m2 and ~ 93% respectively. The realistic application of our PPC is investigated by lightening up 24 blue LEDs for 7 days with same intensity by charging the device once for 50 seconds.
关键词: MMT,PVDF,power density,piezoelectric,dielectric,energy
更新于2025-11-14 17:28:48
-
A Wide Temperature Insensitive Piezoceramics for High-Temperature Energy Harvesting
摘要: One of the key challenges in the development of high-temperature energy harvesting (HTEH) technology is to clarify the relationship between temperature-dependent material parameters and device power generation capabilities. However, at present, the research on temperature stability of piezoceramics mainly relies on thermal annealing technology, which cannot follow the actual temperature dependence of the piezoelectricity, and it is even more difficult to predict the temperature stability of HTEH. To shed light on this field, here, (1-x)BiScO3-xPbTiO3 system was chosen for building HTEH material, and the temperature dependent electrical parameters, such as d33, εr, and g33, have been measured by multiple in-situ techniques. It was found that the synergistic effect of d33 and εr with temperature helps to obtain a stable g33 value in a wide temperature range. Moreover, in the mode of the cantilever-type energy harvester, a stable output voltage was obtained at x=0.64 harvester with less than 20% change over a broad temperature range of 100-250 oC, and it was verified that the temperature stability of g33 is crucial to the operation stability of HTEH devices.
关键词: in-situ techniques,piezoelectric materials/properties,energy harvesting,thermal properties
更新于2025-11-14 17:28:48
-
Enhanced breakdown strength and energy storage density in a new BiFeO3-based ternary lead-free relaxor ferroelectric ceramic
摘要: A new ternary lead-free relaxor ferroelectric ceramic of (0.67-x)BiFeO3-0.33(Ba0.8Sr0.2)TiO3-xLa(Mg2/3Nb1/3)O3+y wt.% MnO2+z wt.% BaCu(B2O5) (BF-BST-xLMN+y wt.% MnO2+z wt.% BCB) was prepared by a solid-state reaction method. The substitution of LMN for BF was believed to induce a typical dielectric relaxation behavior owing to the increased random fields. After co-doping MnO2 and BCB, a significant decrease in the conductivity and grain size was simultaneously realized, resulting in obviously enhanced dielectric breakdown strength and energy-storage performances at room temperature. A high recoverable energy storage density W~3.38 J/cm3 and an acceptable energy storage efficiency η~59% were achieved in the composition with x=0.06, y=0.1 and z=2 under a measuring electric field of 23 kV/mm. In addition, the energy-storage performance is quite stable against both frequency (0.1 Hz-100 Hz) and temperature (30-170 oC), suggesting that BF-BST-xLMN+y wt.% MnO2+z wt.% BCB lead-free relaxor ferroelectric ceramics might be a promising dielectric material for high-power pulsed capacitors.
关键词: Lead-free ceramics,Relaxor ferroelectrics,Energy storage,BiFeO3,BDS
更新于2025-11-14 17:28:48
-
Structure-design strategy of 0–3 type (Bi0.32Sr0.42Na0.20)TiO3/MgO composite to boost energy storage density, efficiency and charge-discharge performance
摘要: A novel 0–3 type (Bi0.32Sr0.42Na0.20)TiO3/MgO composite is investigated in this work, which possesses a high stored energy storage density ws?2.50 J/cm3, recoverable energy storage density WR?2.09 J/cm3 with high efficiency η?84% under low electric field (20 kV/mm). The excellent performance is owning to the increase of breakdown strength (BDS) value and the intrinsic mechanism for enhanced BDS value by MgO incorporation is disclosed by numerical simulations (COMSOL). Moreover, the studied composite exhibits excellent charge-discharge performance, the current density (CD) and power density (PD) are 1671 A/cm2 and 150 MW/cm3, respectively, which are much superior to that of other ceramics. Besides, most of the stored energy is discharged within ?0.15 μs via charge-discharge tests. This work not only provides a novel technique to designing bismuth-based ceramic capacitors with simultaneously high Wd, η and excellent charge-discharge performance, but also deepens the understandings of the role for the metallic oxide in the composite.
关键词: 0–3 Composite,Energy storage,Numerical simulations,Charge-discharge,Lead-free
更新于2025-11-14 17:28:48
-
Temperature-dependent dielectric response of (1-x)PVDF/(x)BaTiO3 nanocomposite films
摘要: The PVDF/BaTiO3 nanocomposite films were prepared by solution casting method by using dimethylformamide as solvent. The dielectric constant and loss tangent of the PVDF and PVDF/BaTiO3 composites have been determined as functions of frequency (20 Hz to 2 MHz) and temperature (80 to 425 K). A significant enhancement in dielectric constant ε' is observed in composite samples. Tangent loss factor (tan δ) is maximum at lower frequencies due to interfacial polarization. In composite samples owing to the synthesis process, there is a phase transition in PVDF from α to β which results in the formation of dipolar relaxation. The dipolar nature of both the PVDF and PVDF/BaTiO3 nanocomposites is arrested below 200 K. The activation energy values (0.43- 0.69 eV) associated with tan δ peak in the region 200 – 270 K are in agreement with the activation energy associated with a dipolar relaxation process. The relaxation time (τ) decreases with increasing BaTiO3 filler content while the number density of dipoles increases from 4.06×1021 cm-3 for pristine PVDF to 6.62×1023 cm-3 for (0.5)PVDF/(0.5)BaTiO3 composite and confirms a significant amount of dipolar relaxation in PVDF/BaTiO3 composites.
关键词: dielectric relaxation,activation energy,dielectric constant,PVDF/BaTiO3 nanocomposites
更新于2025-11-14 17:28:48
-
(Bi0.51 Na0.47)TiO3 based lead free ceramics with high energy density and efficiency
摘要: Dielectric ceramics with high energy storage density and energy efficiency play an important role in high power energy storage applications. In this work, lead free relaxor ferroelectric ceramics in (1-x)Bi0.51Na0.47TiO3-xBa(Zr0.3Ti0.7)O3 (BNT-BZT100x: x=0.20, 0.30, 0.40 and 0.50) system are fabricated by conventional solid-state sintering method. The BNT-BZT100x ceramics are sintered dense with minimal pores, exhibiting pseudocubic symmetry and strong relaxor characteristic. A very high energy storage density of 3.1 J/cm3 and high energy efficiency of 91% are simultaneously achieved in BNT-BZT40 ceramic with 0.1mm in thickness, at the applied electric field of 280 kV/cm. The temperature stability of the energy density is studied over temperature range of 20-160°C, showing minimal variation below 1.5%, together with the excellent cycling reliability (the variations of both energy density and efficiency are below 3% up to 106 cycles), making BNT-BZT40 ceramic promising as a candidate for high-temperature dielectric and energy storage applications.
关键词: relaxor characteristic,lead free ceramic,energy storage
更新于2025-11-14 17:28:48
-
Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film
摘要: Ferroelectric/antiferroelectric thin/thick films with large positive or negative electrocaloric (EC) effects could be very useful in designing commercial refrigeration devices. Here, a giant negative EC effect (maximum ΔT ≈ ?42.5 K with ΔS ≈ ?29.3 J K?1 kg?1) comparable to the best positive EC effects reported so far is demonstrated for 0.5(Ba0.8Ca0.2)TiO3–0.5Bi(Mg0.5Ti0.5)O3 (BCT–BMT) lead-free relaxor ferroelectric thin films prepared on Pt(111)/TiOx/SiO2/Si substrates using a sol–gel method. An electric-field induced structural phase transition (nanoscale tetragonal and orthorhombic to rhombohedral) along the out-of-plane [111] direction plays a very key role in developing the giant negative EC effect. This breakthrough will pave the way for practical applications of next-generation refrigeration devices with high cooling efficiency in one cycle by ingeniously utilizing and combining both the giant negative and positive EC effects. Moreover, a large energy density of 51.7 J cm?3 with a high power density of 1.15 × 1010 W kg?1 at room temperature is also achieved in the thin film, indicating that it is also an attractive multifunctional material for energy storage.
关键词: lead-free,energy storage,electrocaloric effect,phase transition,thin film,relaxor ferroelectric
更新于2025-11-14 17:28:48
-
Efficient Dye-Sensitized Solar Cells Composed of Nanostructural ZnO Doped with Ti
摘要: Photoanode materials with optimized particle sizes, excellent surface area and dye loading capability are preferred in good-performance dye sensitized solar cells. Herein, we report on an efficient dye-sensitized mesoporous photoanode of Ti doped zinc oxide (Ti-ZnO) through a facile hydrothermal method. The crystallinity, morphology, surface area, optical and electrochemical properties of the Ti-ZnO were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and X-ray diffraction. It was observed that Ti-ZnO nanoparticles with a high surface area of 131.85 m2 g?1 and a controlled band gap, exhibited considerably increased light harvesting efficiency, dye loading capability, and achieved comparable solar cell performance at a typical nanocrystalline ZnO photoanode.
关键词: bandgap energy,dye-sensitized solar cell,photovoltaic performance,Ti doped ZnO
更新于2025-11-14 17:04:02
-
Latent tracks and novel infrared waveguide formation in lithium tantalate irradiated with swift heavy ions
摘要: In this work, the formation mechanisms of latent ion tracks and infrared-light waveguides in ion-irradiated LiTaO3 single crystals were comparatively studied using 200 MeV Kr17+ irradiation at a fluence of 1 × 1012 cm?2 and 247 MeV Ar12+ irradiation at fluences of 1 × 1012 cm?2 and 3 × 1012 cm?2. Because of the intense electronic energy loss, the produced lattice disorder and formed latent track were experimentally determined through complementary techniques, including the analysis of transmission electron microscopy patterns and Rutherford backscattering/channeling spectra. Corresponding to different ions with different irradiation energies and electronic energy losses, the related spatio-temporal evolutions of lattice temperatures in Kr17+- and Ar12+-irradiated LiTaO3 crystals were numerically calculated using the inelastic thermal spike model. The simulation results theoretically describe the experimentally observed lattice disorder and latent track behaviors. The lattice swelling in the latent-ion-track regions was demonstrated using high-resolution x-ray diffraction patterns; the lattice swelling resulted in a decrease in the refractive index, thereby providing a path to tailor the optical properties and fabricate the waveguide structure. Optical measurements and simulations indicated that the formed LiTaO3 waveguide could effectively support the guided modes and confine the light propagation, especially in the infrared region.
关键词: swift heavy ion irradiation,latent ion track,electronic energy loss,infrared waveguide
更新于2025-11-14 17:04:02