- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[Laser Institute of America ICALEO? 2015: 34th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing - Atlanta, Georgia, USA (October 18–22, 2015)] International Congress on Applications of Lasers & Electro-Optics - Microstructural effects induced by laser shock peening for mitigation of stress corrosion cracking
摘要: Stress corrosion cracking is a phenomenon that can lead to rapid, sudden failure of metallic products. In this paper we examine the mechanisms of SCC mitigation of stainless steel and brass samples using laser shock peening (LSP). The behavior of hydrogen within the crystal lattice is one of the most dominant contributors to SCC, where uptake of hydrogen strains the lattice and increases its hardness. Cathodic charging of the metallic samples in 1M sulfuric acid was performed in order to accelerate hydrogen uptake. Non-treated samples underwent hardness increases of 28%, but LSP treated samples only increased in the range of 0 to 8%, indicative that LSP keeps hydrogen from permeating into the metal. Mechanical U-bends subjected and MgCl2 environments are analyzed, to determine changes in fracture morphology. Surface chemical effects are addressed via Kelvin Probe Force Microscopy, which is used for finding changes in the work function caused by LSP treatment. A finite element model of material deformation from U-bending was developed to analyze and compare the induced stresses. With LSP, there is a potential for overprocessing the samples, whereby negative effects refinement, to corrosion martensite formation) can arise. Detection of any martensite phases formed is performed using x-ray diffraction. We find LSP to be beneficial for stainless steel but does not improve brass’s SCC resistance. With our analysis methods we provide a further understanding of the process whereby LSP reduces subsequently highlight SCC for important implementation of the process.
关键词: Brass,Stainless steel,Hydrogen uptake,Stress corrosion cracking,Cathodic charging,Kelvin Probe Force Microscopy,Laser shock peening,Finite element model
更新于2025-09-23 15:21:01
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Femtosecond Laser Induced Surface Micro-Structure Building by Material Ejection and Ablation on Cu and Al
摘要: Theoretical and experimental approaches verifying the fluidic operation of a partially shielded digital microfluidics device are presented in this paper. This paper is motivated by recent demand from the synthetic biology community for electrowetting on dielectric (EWD) enabled in-droplet electroporation, but is generalizable to a range of EWD applications that require shielding structures to be patterned on the EWD. An electrode patterned in an additional metal layer on the insulator that supports EWD actuation reduces the effective strength of the EW force due to dielectric shielding at the droplet contact line. A numerical model was developed to predict the impact of the partially shielding electrode on threshold voltage, EW force, fluid velocity, and droplet transport time. Compared with a batch of devices lacking the extra electrode, the presence of the added metal layer resulted in a 29% increase in threshold voltage, an 82% increase in transport time, and a 44% decrease in average transport velocity. Each trend agrees with the simulation results obtained from the fluid transport model. These results support the development of design rules for microfluidic devices that require partially shielding metal layers to integrate with EWD device architectures.
关键词: gene transfer,Fluidics,model,transport,electroporation,electrowetting on dielectric,electrotransfer,digital microfluidics,mechanics,finite element model,device
更新于2025-09-19 17:13:59
-
Effect of Laser Shock Peening on Fatigue Life at Stress Raiser Regions of a High-Speed Micro Gas Turbine Shaft: A Simulation Based Study
摘要: Fatigue failure due to stress raiser regions on critical rotating components in gas turbine engines, such as the shaft, is a crucial aspect. Methods to reduce these stresses and improve fatigue life are a source of ongoing research. Laser shock peening is a method where compressive residual stresses are imparted on the stress raisers of such components. However, numerical based studies on multiple laser shock peening applied to stress raisers is under-researched. Hence, this study will attempt to predict the fatigue life at fillet radii step induced stress raiser regions on a high-speed gas turbine engine shaft by utilization of laser shock peening. The objective of this study was achieved by developing a more computational efficient finite element model to mimic the laser shock peening process on the fillet radii step induced stress raiser regions of a shaft. A modified laser shock peening simulation method for effective prediction of the residual stress field was introduced. Furthermore, the fatigue life improvement due to laser shock peening was predicted by employing Fe-safe fatigue software. From the results, the modified laser shock peening simulation method provided accurate prediction of the residual stress field with a reduced computational time of over 68% compared to conventional methods. The fatigue life revealed an improvement of 553% due to laser shock peening, which is comparable to similar findings in the literature. Hence, from the findings and results achieved, the developed finite element model can be an appropriate tool to assist in the fatigue life estimation of laser shock peening applied to stress raisers.
关键词: Fatigue,laser shock peening,Fe-safe software,stress raiser regions,finite element model
更新于2025-09-16 10:30:52
-
A Hybrid Modeling of the Physics-Driven Evolution of Material Addition and Track Generation in Laser Powder Directed Energy Deposition
摘要: Directed Energy Deposition (DED) is one of the most promising additive manufacturing technologies for the production of large metal components and because of the possibility it offers of adding material to an existing part. Nevertheless, DED is considered premature for industrial production, because the identification of the process parameters may be a very complex task. An original hybrid analytic-numerical model, related to the physics of laser powder DED, is presented in this work in order to evaluate easily and quickly the effects of different sets of process parameters on track deposition outcomes. In the proposed model, the volume of the deposited material is modeled as a function of process parameters using a synergistic interaction between regression-based analytic models and a novel element activation strategy. The model is implemented in a Finite Element (FE) software, and the forecasting capability is assessed by comparing the numerical results with experimental data from the literature. The predicted results show a reasonable correlation with the experimental dimensions of the melt pool and demonstrate that the proposed model may be used for prediction purposes, if a specific set of process parameters that guarantees adequate adhesion of the deposited track to the substrate is introduced.
关键词: laser powder deposition,finite element model,thermal analysis,directed energy deposition,additive manufacturing
更新于2025-09-16 10:30:52
-
Thermocouple-tip-exposing temperature assessment technique for evaluating photothermal conversion efficiency of plasmonic nanoparticles at low laser power density
摘要: A new thermocouple (TC) tip-exposing temperature assessment technique that combines experimental temperature measurements with a numerical model of the photothermal conversion efficiency η is presented. The proposed technique is designed to evaluate η for a gold-coated superparamagnetic iron oxide nanoparticle (SPIO-Au NP) solution (26 nm, 12–70 ppm) at low continuous wave laser power (103 mW, 532 nm) irradiation in a convenient manner under ambient conditions. The TC tip temperature is measured during the first 30 s of the laser exposure, and the results are combined with a finite element model to simulate the temperature rise of the NP solution for a given concentration. The value of η is adjusted in the model until the model agrees with the measured transient TC temperature rise. Values of η = 1.00 were observed for all concentrations. Theoretical predictions of η derived by Mie theory confirmed the near unity conversion efficiency of the as-synthesized SPIO-Au NPs. Advantages of the current technique include co-locating the TC tip in the geometric center of the laser-heated region, rather than outside of this region. In addition, the technique can be done under ambient room conditions using unmodified commercially available hardware.
关键词: finite element model,plasmonic nanoparticles,low laser power density,thermocouple,photothermal conversion efficiency
更新于2025-09-16 10:30:52
-
A Finite Element Model for Temperature Prediction in Laser-Assisted Milling of AerMet100 Steel
摘要: Laser-assisted milling (LAM) represents an innovative process to enhance productivity in comparison with conventional milling. The workpiece temperature in LAM not only affects the cutting performance of materials, but also the machined surface quality of the part. This paper presents a 3D transient finite element (FE) model for workpiece temperature prediction in LAM. A moving Gaussian laser heat source model is implemented as a user-defined subroutine and linked to ABAQUS. The thermal model is validated by machining AerMet100 steel under different process parameters (laser power, spindle speed and feed per tooth). Good agreement between predicted and measured workpiece temperatures indicates that the FE model is feasible. In addition, the effects of laser spot size and incident angle on workpiece temperature are analyzed based on the proposed model. This work can be further applied to optimize process parameters for controlling the machined surface quality in LAM.
关键词: workpiece temperature,AerMet100 steel,finite element model,laser-assisted milling
更新于2025-09-16 10:30:52
-
Non-dimensional process maps for normalized dilution limits in laser direct metal deposition
摘要: The quality and integrity of laser direct metal deposition (DMD) processes primarily depend on the substrate dilution and the nature of residual stresses in the deposited layer. An adequate amount of melting of the substrate is required to ensure the formation of sound metallurgical bond between the deposited layer and substrate. Insufficient melting and excessive dilution may lead to adverse effects. Furthermore, the dilution also controls the location of the melt front in substrate where maximum tensile residual stresses occur. The presence of tensile residual stresses in the deposited layer may be detrimental to service life, especially, for components repaired using DMD. These challenges can be overcome by predicting and controlling the dilution and the nature of residual stress as a function of process parameters. To model the direct metal deposition process, a 3D coupled metallo-thermomechanical finite element model is employed to predict the temperature and the residual stress due to thermomechanical interactions and metallurgical transformations and the substrate dilution. Non-dimensional process parameters affecting the dilution in laser DMD have been identified using Buckingham-Π theorem. The metallo-thermomechanical model is used to develop empirical relationships via regression to correlate the dimensionless process parameters with the dilution. These correlations are employed in developing the isopleths in the form of process maps, which could predict regions of inadequate fusion and excessive dilution (unduly large substrate melting). It may be noted that the limiting value of dilution corresponds to the condition where the entire deposited layer (cladding) is under compressive residual stresses. Any dilution higher than this will result in excess substrate melting which is undesirable. The limiting values of normalized dilution are estimated to be 1 and ~1.3 corresponding to complete deposit-substrate fusion and presence of entirely compressive residual stress in deposition, respectively. These process maps are designed to provide a theoretical framework for understanding the influence of process parameters and provide informed decisions on the selection of appropriate process parameters for ensuring the quality and integrity of the deposition.
关键词: Laser cladding,residual stress,metallo-thermomechanical finite element model,process maps,dilution,non-dimensional parameters
更新于2025-09-12 10:27:22
-
Optical Fiber Strain Measurements and Numerical Modeling of Load Tests on Grouted Anchors
摘要: This paper reports on the behavior of a grouted anchor instrumented with a fiber optic strain sensor in the grout body along the entire anchor length. During load tests up to the estimated pull-out capacity, the strain measurements indicate that a delamination occurs in the tendon bond length between the steel tendons and the grout body. The upper delaminated part of the grout body is under compression, whereas the lower bonded part of the grout body is under tension. This delamination gradually progresses as the anchor load increases. Furthermore, a significant part of the load is transferred from the anchor to the soil in the tendon free length. The anchor behavior is further modeled with a one-dimensional finite-element model that includes the steel tendons and the grout body, where an interface damage model is used to account for possible delamination of the interface. The numerical model confirms that the observed compressive and tensile strains in the grout can be related to a delamination of the steel strands in the tendon bond length. The experiment and numerical modeling demonstrate how optical fiber measurements in the grout body can be used, in operational conditions, to assess the anchor behavior, the mobilization of the soil resistance, and the estimation of the remaining anchor capacity.
关键词: soil resistance,fiber optic strain sensor,grouted anchor,delamination,finite-element model
更新于2025-09-12 10:27:22
-
3-D FE heat transfer simulation of quasi-simultaneous laser transmission welding of thermoplastics
摘要: Laser transmission welding of thermoplastics is a non-contact welding process for producing aesthetically and qualitatively high-grade joints with low thermal and mechanical stresses. In this research work, a three-dimensional heat transfer model is developed to simulate the quasi-simultaneous variant of laser transmission welding of thermoplastics. The thermal analysis is implemented to acquire the temperature history in this multi-pass welding process. The transient temperature field is computed using ANSYS? finite element code. The multi-pass movement of laser beam is realized by implementing a subroutine in ANSYS? Parametric Design Language (APDL). The effect of process variables namely laser power, welding speed, number of welding passes and line energy on temperature field during welding is investigated. The predicted outcomes of the temperature profiles, weld pool and time–temperature history are useful for optimizing the process parameters in the quasi-simultaneous laser transmission welding process.
关键词: Thermal analysis,Laser transmission welding,Thermoplastics,Quasi-simultaneous welding,Finite element model
更新于2025-09-12 10:27:22