- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Versatile, Aqueous Soluble C <sub/>2</sub> N Quantum Dots with Enriched Active Edges and Oxygenated Groups
摘要: C2N has emerged as a new family of promising two-dimensional (2D) layered frameworks in both fundamental studies and potential applications. Transforming bulk C2N into zero-dimensional quantum dots (QDs) could induce unique quantum confinement and edge effects that produce improved or new properties. Despite their appealing potential, C2NQDs remain unexplored, and their intriguing properties and a fundamental understanding of their prominent edge effects are still not well understood. Here, we report the first synthesis of water-soluble C2NQDs via a top-down approach without any foreign stabilizer and exploit their linear/nonlinear optical properties and unique edge-preferential electrocatalytic activity toward polysulfides for versatile applications. The resultant dispersant-free C2NQDs with an average size of sub-5 nm feature rich oxygen-carrying groups and active edges, not only enabling excellent dispersion in water but also creating interesting multifunctionality. They can emit not only blue one-photon luminescence (OPL) under UV excitation but also green two-photon luminescence (TPL), enabling their use as a new fluorescent ink. Interestingly, when C2NQDs are introduced to modify commercial separators, they can function as new metal-free catalysts to boost polysulfide redox kinetics and endow Li-S batteries with excellent cycling stability, high rate capability and large areal capacity (7.0 mA h cm-2) at a high sulfur loading of 8.0 mg cm-2. Detailed theoretical and experimental results indicate that the edge of C2N is more favorable for trapping and catalyzing the polysulfide conversion than the terrace and that the synergy between the active edges and oxygenated groups enriched in C2NQDs remarkably improves polysulfide immobilization and catalytic conversion.
关键词: fluorescent ink,multifunctionality,C2N quantum dots,Li-S batteries,polysulfide redox kinetics,water-soluble
更新于2025-09-23 15:19:57
-
Rapid Synthesis of Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots for Effective Detection of Ferric Ions and as Fluorescent Ink
摘要: Graphene quantum dots (GQDs) have attracted much attention of many researchers because of their low cytotoxicity, good optical stability, and excellent photoluminescence property, which make them novel nanostructured materials in many application fields ranging from energy to biomedicine and the environment. In this work, highly fluorescent nitrogen-doped graphene quantum dots (N-GQDs) were synthesized through microwave heating using sodium citrate and triethanolamine as raw materials. The as-prepared N-GQDs showed considerable bright blue fluorescence with a quantum yield of 8% and excellent uniform dispersion with an average diameter of approximately 5.6 nm; they also exhibited excellent stability and pH-sensitive properties. Furthermore, we demonstrated the application of N-GQDs as probes for metal ion detection. The results indicated that N-GQDs responded rapidly toward Fe3+ because of the static quenching mechanism. A detection method was proposed, with detection linear in two ranges from 20 to 70 nM (F = ?0.9666 CFe3+ (μM) + 1191.94 (R = 0.9541)); the lowest detection limit of 9.7 nM for Fe3+ was obtained. The results obtained in this work lay the foundation for the development of high-performance and robust metal ion detection sensors. Moreover, it can also possibly be used as a new type of fluorescent ink.
关键词: Nitrogen-doped,Fluorescent probe,Fluorescent ink,Fe3+ detection,Graphene quantum dots
更新于2025-09-12 10:27:22
-
Nitrogen-Doped Durian Shell Derived Carbon Dots for Inner Filter Effect Mediated Sensing of Tetracycline and Fluorescent Ink
摘要: Photoluminescent carbon dots have gained increasing attention in recent years due to their unique optical properties. Herein, a facile one-pot hydrothermal process is used to develop nitrogen-doped carbon dots (NCDs) with durian shell waste as the precursor and Tris base as the doping agent. The synthesized NCDs showed a quantum yield of 12.93% with a blue fluorescence under UV-light irradiation and maximum emission at 414 nm at an excitation wavelength of 340 nm. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy showed the presence of nitrogen and oxygen functional groups on the NCD surface. The particles were quasi-spherical with an average particle diameter of 6.5 nm. The synthesized NCDs were resistant to photobleaching and stable under a wide range of pH but were negatively affected by increasing temperature. NCDs showed high selectivity to Tetracycline as the fluorescence of NCDs was quenched significantly by Tetracycline as a result of the inner filter effect. Based on sensitivity experiments, a linear relationship (R2 = 0.989) was developed over a concentration range of 0–30 μM with a detection limit of 75 nM (S/N = 3). The linear model was validated with two water samples (lake water and tap water) with relative recoveries of 98.6–108.5% and an RSD of <3.5%.
关键词: Fluorescent ink,Tetracycline detection,Durian shell waste,Nitrogen doping,Carbon dots
更新于2025-09-04 15:30:14
-
Indian Gooseberry-Derived Tunable Fluorescent Carbon Dots as a Promise for In Vitro/In Vivo Multicolor Bioimaging and Fluorescent Ink
摘要: We report the synthesis of eco-friendly fluorescent nitrogen-doped carbon dots (NCDs) using the renewable resource of Phyllanthus emblica juice as a precursor by the hydrothermal process at 200 °C for 12 h. The synthesized NCDs emitted bright fluorescence without any pretreatment of the sample under the excitation of UV light and exhibited excitation-dependent fluorescence emission. The NCDs have nitrogen-containing and oxygen-containing functional groups such as amino, hydroxyl, and carboxyl on the surface of the carbon structure. Furthermore, the NCDs exhibited excellent water dispersibility with prolonging stability and good biocompatibility. On the basis of the good optical properties, the NCDs have potentially been used as a promising staining agent on HCT-116 human colon cancer cells and Caenorhabditis elegans (nematodes) for multicolor cellular imaging. In the cell cytoplasm, the NCDs showed rapid uptake and high cytocompatibility on cellular morphology with bright fluorescence emission. Furthermore, the NCDs were used as fluorescent ink for writing and drawing with anticoagulation. In addition, the NCDs were significantly utilized as a fluorescent ink for thumb impression, which glows instantly under the illumination of UV light and does not require a secondary treatment. Hence, the synthesized NCDs can be used as ideal multicolor fluorescent probes for bioimaging applications and as fluorescent ink instead of traditional fluorescent ink.
关键词: nitrogen-doped,hydrothermal synthesis,carbon dots,fluorescent ink,bioimaging
更新于2025-09-04 15:30:14