修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Lithium Distribution in Structured Graphite Anodes Investigated by Laser-Induced Breakdown Spectroscopy

    摘要: For the development of thick film graphite electrodes, a 3D battery concept is applied, which significantly improves lithium-ion diffusion kinetics, high-rate capability, and cell lifetime and reduces mechanical tensions. Our current research indicates that 3D architectures of anode materials can prevent cells from capacity fading at high C-rates and improve cell lifespan. For the further research and development of 3D battery concepts, it is important to scientifically understand the influence of laser-generated 3D anode architectures on lithium distribution during charging and discharging at elevated C-rates. Laser-induced breakdown spectroscopy (LIBS) is applied post-mortem for quantitatively studying the lithium concentration profiles within the entire structured and unstructured graphite electrodes. Space-resolved LIBS measurements revealed that less lithium-ion content could be detected in structured electrodes at delithiated state in comparison to unstructured electrodes. This result indicates that 3D architectures established on anode electrodes can accelerate the lithium-ion extraction process and reduce the formation of inactive materials during electrochemical cycling. Furthermore, LIBS measurements showed that at high C-rates, lithium-ion concentration is increased along the contour of laser-generated structures indicating enhanced lithium-ion diffusion kinetics for 3D anode materials. This result is correlated with significantly increased capacity retention. Moreover, the lithium-ion distribution profiles provide meaningful information about optimizing the electrode architecture with respect to film thickness, pitch distance, and battery usage scenario.

    关键词: laser-induced breakdown spectroscopy,3D battery,lithium-ion battery,ultrafast laser ablation,graphite anode

    更新于2025-09-12 10:27:22

  • Effect of Defects on Diffusion Behaviors of Lithium-ion Battery Electrodes: In Situ Optical Observation and Simulation

    摘要: Lithium-ion batteries (LIBs) with high energy efficiency are urgeniltly needed in various fields. For the LIBs electrodes, defects would be generated during manufacture processes and mechanical degradation, and the defects significantly impact the stability and performance of LIBs. However, the effects of electrode defects on the electrochemical processes are still not clear. Herein, an in situ optical observation system is developed for monitoring the Li diffusion around the pre-introduced defects in the commercial graphite electrodes. The experiments show the gas-filled defects vertical to the direction of the Li diffusion would obviously decelerate Li diffusion, while the electrolyte-filled defects parallel to the direction of the Li diffusion would accelerate Li diffusion. In addition, finite element analysis (FEA) suggests consistent with the experiments, showing nonuniform distribution of local Li concentration around the defect. The equivalent diffusivity obtained by FEA is also dependent on the configuration of the defects. The diffusivities of electrolyte-filled parallel defect and gas-filled vertical defect are 12.6 % and 11.0 %, respectively. For the gas-filled defects, the size-effect calculation manifests that equivalent diffusivity would decrease with the enlarged defect size, and the shape of the defects would substantially impact the decrease rate. The results directly reveal the mechanisms of defect induced diffusion behavior change in the electrodes by the new equivalent 2D experiments, and the equivalent diffusivity would be useful for optimizing electrode designs in LIBs.

    关键词: colorimetric method,defect,graphite anode,lithium-ion battery,diffusion

    更新于2025-09-09 09:28:46