修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • Transparent Thin-Film Silicon Solar Cells for Indoor Light Harvesting with Conversion Efficiencies of 36% without Photo-degradation

    摘要: With the development of the Internet of Things (IoT), indoor photovoltaics are attracting considerable interest owing to their potential to benefit various IoT-related fields. Therefore, this study investigates the use of transparent hydrogenated amorphous silicon (a-Si:H) solar cells for a broad range of applications, including indoor light harvesting. High gap triple-layers were employed in the a-Si:H solar cells to obtain a high shunt resistance and high short-circuit current, JSC, and open-circuit voltage, VOC, under indoor illumination. Additionally, multiple color-adjusting layers were added without noticeable costs to the conversion efficiency. The maximum efficiency of 36.0% was obtained at a transmittance of 20.44% under white LED light (3,000 lx and 0.92 mW cm-2). Furthermore, the fabricated transparent solar cells show excellent long-term performance, sustaining over 99% of original efficiency under continuous indoor light illumination for 200 h. These cells could accelerate the progress of energy harvesting in IoT applications and facilitate the construction of integrated photovoltaics.

    关键词: amorphous silicon solar cells,thin film silicon solar cells,transparent solar cells,indoor photovoltaics,colored solar cells

    更新于2025-09-23 15:21:01

  • Highlya??Transparent and Truea??Colored Semitransparent Indoor Photovoltaic Cells

    摘要: Organic photovoltaic (OPV) cells are promising indoor light energy harvesters because organic materials absorb strongly in the visible range. An indoor photovoltaic (IPV) device is an effective tool for the remote off-grid wireless charging. However, as the indoor light fluxes are much weaker than the 1-Sun condition, high-performance indoor cells should have large areas in order to generate appreciable energies. They would then appear as flat, but expansive and dark objects if deployed indoors. Their presence would then alter the indoor lighting environment and affect visual perceptions. This work addresses the lighting and perception issues of IPV cells in three ways. i) A concept is proposed such that a high-efficiency, semitransparent indoor OPV cell should possess an absorbance which is mismatched with the emission spectra of the light sources. ii) It is demonstrated that bulk heterojunction (BHJ) OPV solar cells with porphyrin donors can serve as high-transparency and high-efficiency indoor light harvesters. iii) Quantitative assessment criteria are presented for the transparency and chromaticity of an indoor semitransparent OPV cell, demonstrating that porphyrin-based P2:PC71BM semitransparent BHJ cells can achieve a power conversion efficiency (PCE) exceeding 10%, and an illuminance transparency ~65%, while preserving the color perception of the light sources.

    关键词: porphyrin,indoor photovoltaics,human visual perception,semitransparent devices

    更新于2025-09-23 15:21:01

  • Recent Progress on Indoor Organic Photovoltaics: From Molecular Design to Production Scale

    摘要: Recently, indoor photovoltaics have attracted much interest for their ability to power small electronic devices and sensors, especially with the growth of the Internet of Things (IoT). Due to their absorption covering ambient emission spectra and tunable electronic structures, π-conjugated polymers and small molecules are well-suited for these applications. Among many benefits, including their ink processability, lightweight and flexibility; indoor organic photovoltaics (IOPVs) show power conversion efficiencies (PCE) over 26%. It represents a power output over 30 μW cm-2 under office light (500 lux), which is sufficient to operate many electronic devices and sensors with a relatively small photovoltaic area. This focus review highlights the major advances in the material design for IOPVs and includes some industrial insights to reach the production scale criteria.

    关键词: indoor photovoltaics,material design,power conversion efficiencies,organic photovoltaics,Internet of Things

    更新于2025-09-19 17:13:59

  • Device characteristics and material developments of indoor photovoltaic devices

    摘要: Indoor photovoltaics (IPVs), which convert the indoor light energy into direct electricity, have attracted research attention due to their potential use as an excellent amicable solution of sustainable power source to drive low-power-needed sensors for the internet of things (IoT) applications. Our daily life adopts various indoor light sources, such as indirect sunlight, incandescent lamps, halogen lamps, ?uorescent lamps, and LED bulbs, that typically deliver lower light intensity (200–1000 lux) as compared to that of sun light (~100,000 lx). In this review, we ?rstly classi?ed the indoor lights depending on their working mechanism and resulting emission spectrum. Because the indoor light intensities are rather low that may lead to overestimate/underestimate the power conversion e?ciency (PCE) of IPV devices, then, the cautious points for correctly measuring the indoor light intensity as well as the device characteristics are summarized. Several light sources with various light intensities are reported so far, but for lack of common or standard calibration meter that induces a ambiguity in PCE determination, so we suggest/propose to use a universal LED lux meter with NIST-traceable calibration (e.g. Extech LT40-NIST) and also recommended the device results are expressed in maximum power point Pmax along with PCE values. It is generally believed that the materials play key roles on the performance of the IPV devices. Since the indoor light intensity is much weaker as compared to that of outdoor irradiation, the typical inferior photo-stability of organic materials under sunlight may not be as crucial as we considered to harvest indoor light energy, opening a great room for organic IPV material developments. In principle, all materials for outdoor PVs may also be useful for IPVs, but the fundamental material requirement for IPVs which needs su?ciently covering the absorption range between the 350–700 nm with high molar extinction coe?cient should be primarily concerned. In order to get the thorough knowledge of materials for achieving better e?cient IPVs, the reported IPVs were collected and summarized. According to these reports, the materials utilized for IPVs have been classi?ed into two major groups, inorganic and organic materials, then divided them into several sub-classes, including (1) silicon and III-V semiconductor photovoltaics, (2) dye-sensitized photovoltaics, (3) organic photovoltaics, and (4) perovskite-based photovoltaics, depend on their structural nature and device working principle. For every individual class, the structure-property-e?ciency relationship of the materials was analyzed together with the highlights on the best e?ciency material, challenge and perspective. For inorganic IPV materials, III-V semiconductor GaAs-based IPVs performed a very impressive PCE (28%). For dye sensitizers, there are more ?exible strategies to modulate the absorption pro?les of organic materials. A high e?ciency dye-sensitized solar cell (DSSC)-based IPV with a PCE up to 32% has been successfully realized with co-sensitized dyes. For organic solar cell (OSC)-based IPVs, fullerene-based acceptors are advantageous for their well-matching desired absorption range and superior electron transport features. A recent OSC-based IPV with the active layer composed of dithienobenzene-based donor and fullerene acceptor was reported to deliver a PCE of 28%. Among these emerging photovoltaic materials, it is no doubt that perovskites (e.g. CH3NH3PbI3) are superior for solar energy conversion due to the crystallinity for good charge transport, better spectral coverage and the low exciton binding energy. Until very recent, a perovskite-based IPV with a PCE of 35% was reported with good stability by the incorporation of an ionic liquid for e?ectively passivating the surface of the perovskite ?lm, indicating the bright prospect of perovskite for IPV application. Overall, the review on these reports implies the essential criteria of materials suitable for IPVs that may trigger new ideas for developing future champion materials for various devices and the realization of practical IPV applications.

    关键词: Organic solar cells,Dye-sensitized solar cells,Silicon and III-V semiconductors,Perovskite materials,Power conversion efficiency,Internet of Things,Organic materials,Indoor photovoltaics

    更新于2025-09-16 10:30:52