修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • An Effective Method for Recovering Nonradiative Recombination Loss in Scalable Organic Solar Cells

    摘要: Regarded as a critical step in commercial applications, scalable printing technology has become a research frontier in the field of organic solar cells. However, inevitable efficiency loss always occurs in the lab-to-manufacturing translation due to the different fabrication processes. In fact, the decline of photovoltaic performance is mainly related to voltage loss, which is mainly affected by the diversity of phase separation morphology and the chemical structures of photoactive materials. Fullerene derivative indene-C60 bisadduct (ICBA) is introduced into a PBDB-T-2F:IT-4F system to control the active layer morphology during blade-coating process. Accordingly, as a symmetrical fullerene derivative, ICBA can regulate the crystallization tendency and molecular packing orientation and suppress charge carrier recombination. This ternary strategy overcomes the morphology issues caused by weaker shear impulse in blade-coating process. Benefiting from the reduced nonradiative recombination loss, 1.05 cm2 devices are fabricated by blade coating with a power conversion efficiency of 13.70%. This approach provides an effective support for recovering the voltage loss during scalable printing approaches.

    关键词: nonradiative recombination loss,organic solar cells,large-area solar cells,blade coating

    更新于2025-09-23 15:21:01

  • Non-halogenated solvent-processed ternary-blend solar cells via alkyl-side-chain engineering of a non-fullerene acceptor and its application in large-area devices

    摘要: A novel asymmetric non-fullerene acceptor (T2-OEHRH) with a simple chemical structure is designed and synthesized. Compared with the symmetric T2-ORH, T2-OEHRH effectively suppresses excessive self-aggregation/crystallization and substantially improves the solubility without sacrificing photoelectrical properties. As a result, T2-OEHRH-based ternary-blend OSCs processed from a non-halogenated solvent exhibit impressive PCEs of 12.10% and 9.32% in small- and large-area devices, respectively.

    关键词: non-fullerene acceptor,large-area solar cells,ternary-blend solar cells,non-halogenated solvent,asymmetric alkyl side-chain

    更新于2025-09-23 15:19:57