修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

26 条数据
?? 中文(中国)
  • Life Cycle Analysis of Double-Arm Type Robotic Tools for LCD Panel Handling

    摘要: This study includes a life cycle assessment of double-arm type robotic tools made with three different materials. The robotic arms are used for Liquid Crystal Display (LCD) panel handling. The environmental impacts generated during all the life stages of the robots have been investigated. The study shows that composite materials have less environmental impact compared with metallic materials. It is also found that the most significant impact category generated by the robotic tools is carcinogen, while the use stage of the robotic tool's life cycle has the greatest environmental impact.

    关键词: environmental impact,robotic tool,green manufacturing,life cycle assessment

    更新于2025-09-23 15:23:52

  • Life cycle sustainability analysis applied to an innovative configuration of concentrated solar power

    摘要: Purpose Life cycle sustainability analysis (LCSA) is being developed as a holistic tool to evaluate environmental, economic and social impacts of products or services throughout their life cycle. This study responds to the need expressed by the scientific community to develop and test LCSA methodology, by assessing the sustainability of a concentrated solar power (CSP) plant based on HYSOL technology (an innovative configuration delivering improved efficiency and power dispatchability). Methods The methodology proposed consists of three stages: goal and scope definition, modelling and application of tools, and interpretation of results. The goal of the case study was to investigate to what extent may the HYSOL technology improve the sustainability of power generation in the Spanish electricity sector. To this purpose, several sustainability sub-questions were framed and different analysis tools were applied as follows: attributional and consequential life cycle assessment, life cycle cost (LCC) analysis and multiregional input-output analysis (MRIO), and social life cycle assessment (S-LCA) in combination with social risk assessment (with the Social Hotspots Database). Visual diagrams representing the sustainability of the analysed scenarios were also produced to facilitate the interpretation of results and decision making. Results and discussion The results obtained in the three sustainability dimensions were integrated using a Bquestions and answers^ layout, each answer describing a specific element of sustainability. The HYSOL technology was investigated considering two different operation modes: HYSOL BIO with biomethane as hybridization fuel and HYSOL NG with natural gas. The results indicated that the deployment of HYSOL technology would produce a reduction in the climate change impact of the electricity sector for both operation modes. The LCC analysis indicated economic benefits per MWh for a HYSOL NG power plant, but losses for a HYSOL BIO power plant. The MRIO analysis indicated an increase in goods and services generation, and value added for the HYSOL technology affecting primarily Spain and to a lower extent other foreign economies. The social analysis indicated that both alternatives would provide a slight increase of social welfare Spain. Conclusions The methodological approach described in this investigation provided flexibility in the selection of objectives and analysis tools, which helped to quantify the sustainability effect of the system at a micro and meso level in the three sustainability dimensions. The results indicated that the innovation of HYSOL power plants is well aimed to improve the sustainability of CSP technology and the Spanish electricity sector.

    关键词: Multiregional input-output (MRIO),Life cycle assessment (LCA),Concentrated solar power,Sustainability,Electricity generation,Social life cycle assessment (S-LCA),Life cycle sustainability assessment (LCSA)

    更新于2025-09-23 15:22:29

  • Dynamic life cycle economic and environmental assessment of residential solar photovoltaic systems

    摘要: With the increasing implementation of solar photovoltaic (PV) systems, comprehensive methods and tools are required to dynamically assess their economic and environmental costs and benefits under varied spatial and temporal contexts. This study integrated system dynamics modeling with life cycle assessment and life cycle cost assessment to evaluate the cumulative energy demand, carbon footprint, water footprint, and life cycle cost of residential grid-connected (GC) and standalone (SA) solar PV systems. The system dynamics model was specifically used for simulating the hourly solar energy generation, use, and storage during the use phase of the solar PVs. The modeling framework was then applied to a residential prototype house in Boston, MA to investigate various PV panel and battery sizing scenarios. When the SA design is under consideration, the maximum life cycle economic saving can be achieved with 20 panels with no battery in the prototype house, which increases the life cycle economic savings by 511.6% as compared to a baseline system sized based upon the engineering rule-of-thumb (40 panels and 40 batteries), yet decreases the demand met by 55.7%. However, the optimized environmental performance was achieved with significantly larger panel (up to 300 units) and battery (up to 320 units) sizes. These optimized configurations increase the life cycle environmental savings of the baseline system by up to 64.6%, but significantly decrease the life cycle economic saving by up to 6868.4%. There is a clear environmental and economic tradeoff when sizing the SA systems. When the GC system design is under consideration, both the economic and environmental benefits are the highest when no battery is installed, and the benefits increase with the increase of panel size. However, when policy constraints such as limitations/caps of grid sell are in place, tradeoffs would present as whether or not to install batteries for excess energy storage.

    关键词: Grid-connected and standalone PV systems,Life cycle costing,System dynamics modeling,Battery storage,Solar photovoltaic systems,Life cycle assessment

    更新于2025-09-23 15:21:01

  • An environmentally conscious photovoltaic supply chain network design under correlated uncertainty: A case study in Iran

    摘要: As the destructive impacts of unbridled use of fossil fuels threaten the quality of life, moving towards renewable energy like solar power has precipitated. While such movements are commendable, environmental impacts of its infrastructure development should not be overlooked. In this sense, this paper addresses a multi-objective robust mathematical model to study an environmentally conscious solar photovoltaic supply chain under correlated uncertainty. The proposed model aims at minimizing the environmental impacts of included activities in the concerned supply chain in addition to minimizing the conventional cost objective. To quantify and assess the relevant environmental impacts, a life cycle assessment-based model is accomplished employing the ReCiPe 2008 approach embedded in the SimaPro software tool. The augmented ?-constraint procedure is deployed to optimize the proposed multi-objective model, which is able to attain compromise solutions from the Pareto-optimal set. Correlated uncertainty whose importance is underlined in the real-life situations of the photovoltaic industry is also tackled exploiting a robust optimization method. Ultimately, the validity of the presented model is vindicated through discussing a case study. The acquired results endorse the effectiveness and usefulness of the model and offer prominent practical and managerial insights.

    关键词: Environmental responsibility,Multi-objective optimization,Correlated uncertainty,Solar energy,Life cycle assessment,Photovoltaic supply chain

    更新于2025-09-23 15:21:01

  • Operational Performance and Degradation Influenced Life Cycle Environmentala??Economic Metrics of mc-Si, a-Si and HIT Photovoltaic Arrays in Hot Semi-arid Climates

    摘要: Life cycle metrics evolution specific to the climate zone of photovoltaic (PV) operation would give detailed insights on the environmental and economic performance. At present, vast literature is available on the PV life cycle metrics where only the output energies ignoring the degradation rate (DR) influence. In this study, the environ-economic analysis of three PV technologies, namely, multi-crystalline silicon (mc-Si), amorphous silicon (a-Si) and hetero-junction with an intrinsic thin layer (HIT) have been carried out in identical environmental conditions. The energy performance parameters and the DR rate of three PV technologies are evaluated based on the monitored real time data from the installation site in hot semi-arid climates. The assessment demonstrates that the HIT PV module technology exhibits more suitable results compared to mc-Si and a-Si PV systems in hot semi-arid climatic conditions of India. Moreover, energy metrices which includes energy payback time (EPBT), energy production factor (EPF) and life cycle conversion efficiency (LCCE) of the HIT technologies are found to be 1.0, 24.93 and 0.15 years, respectively. HIT PV system has higher potential to mitigate the CO2 and carbon credit earned compared to mc-Si and a-Si PV system under hot semi-arid climate. However, the annualized uniform cost (UAC) for mc-Si (3.60 Rs/kWh) and a-Si (3.40 Rs/kWh) are more admissible in relation to the HIT (6.63 Rs/kWh) PV module type. We conclude that the approach of considering DR influenced life cycle metrics over the traditional approach can support to identify suitable locations for specific PV technology.

    关键词: annualized uniform cost,amorphous silicon,crystalline solar cells,life cycle assessment,PV cells,energy payback time,life cycle metrics,HIT,photovoltaic systems,degradation rate

    更新于2025-09-23 15:19:57

  • Reliability and Ecological Aspects of Photovoltaic Modules || Emerging Thin Film Solar Panels

    摘要: Utilizing of photovoltaics (PVs) has been rapidly developing over the past two decades due to its potential for transition from fossil fuels to renewable energy based economies. However, PVs as fuel less energy sources will be sustainable if some issues such as raw materials abundance, production cost, and environmental impacts carefully addressed in their value chains. Among PV technologies, thin film solar panels have been illustrated the potential to reach the sustainability. In this chapter we review some studies about environmental impacts of thin film PVs through life cycle assessment (LCA) and some environmental fate modeling. For the PV technologies, LCA studies need to be conducted to address environmental and energy impacts and encourage the development of PV technologies in a better sustainable way. Three methods of impact assessment in LCA are reviewed and compared, namely, Energy Payback Time (EPBT), Cumulative Energy Demand (CED), and Greenhouse Gases (GHG) emission rate, owing to data and information published in the literature. Generally, most results show promising potential of emerging thin film PVs, especially perovskite solar cells, to reach the best sustainable solution among PV technologies in near future.

    关键词: perovskite solar cell,sustainable energy,emerging thin film photovoltaics,life cycle assessment,environmental impact

    更新于2025-09-23 15:19:57

  • Life cycle assessment of hole transport free planara??mesoscopic perovskite solar cells

    摘要: Organo-metal lead halide perovskite solar cells (PSCs) attract attention due to their low cost and high power conversion efficiency. Some weak points of this technology are short lifetime, instability, and expensive metal electrode deposition. Eliminating the unstable hole transport layer (HTL) and using carbon-based materials as the counter electrode would address both. In this work, we present a cradle-to-gate life cycle assessment of two HTL-free PSC designs, which use solution phase deposition to achieve mesoscopic and planar structures. Environmental impacts of producing 1 m2 PSCs are converted to impacts per kWh electricity generation assuming 5 years of operational lifetime. We find that major impacts come from fluorine doped tin oxide (FTO) glass patterning due to the electricity consumption of FTO patterning and glass cleaning processes. Even though the electricity consumption when manufacturing both PSCs is similar, their different efficiencies make the environmental impacts per kWh of electricity higher for the mesoscopic PSC than for the planar PSC. Energy payback time values of planar PSCs and mesoscopic PSCs are 0.58 and 0.74 years, respectively, and these values are shorter than those of commercial first and second generation solar cells. However, the global warming potential (GWP) values of planar and mesoscopic PSCs are 75 and 94 g CO2-eq/kWh, respectively, and these values are still higher than those of commercial solar cells. To reach the GWP of commercial cells, the operational lifetime would have to be 8 and 10 years for planar and mesoscopic PSCs, respectively.

    关键词: mesoscopic,environmental impacts,HTL-free,life cycle assessment,planar,perovskite solar cells

    更新于2025-09-23 15:19:57

  • Environmental Impact of the High Concentrator Photovoltaic Thermal 2000x System

    摘要: High Concentrator Photovoltaic Thermal (HCPV/T) systems produce both electrical and thermal energy and they are efficient in areas with high Direct Normal Irradiance (DNI). This paper estimates the lifecycle environmental impact of the HCPV/T 2000x system for both electrical and thermal functionalities. Process-based attributional method following the guidelines and framework of ISO 14044/40 was used to conduct the Life Cycle Assessment (LCA). The midpoint and endpoint impact categories were studied. It was found that the main hotspots are the production of the thermal energy system contributing with 50% and 55%, respectively, followed by the production of the tracking system with 29% and 32% and the operation and maintenance with 13% and 7%. The main contributor to the lifecycle environmental impact category indicators was found to be the raw materials acquisition/production and manufacturing of the thermal energy and tracking systems. The results indicate that the lifecycle environmental impact of the HCPV/T 2000x system is lower compared to fuel-based Combined Heat and Power (CHP) and non-Renewable Energy Sources (non-RES) systems.

    关键词: High Concentrator Photovoltaic Thermal (HCPV/T),environmental impacts,Life Cycle Assessment (LCA)

    更新于2025-09-23 15:19:57

  • LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale

    摘要: The replacement of luminaires with discharge lamps with high luminous e?cacy and long life-time LED based equipment is a reality worldwide promoted by policies that favor their gradual substitution. There is a great concern in this manufacturing industry to develop new luminaires with low environmental impact during the manufacturing and transportation processes and its end-of-life disposal (reducing greenhouse gas emissions, toxic or hazardous components, . . . ). Life cycle assessment (LCA) is a very extended tool used to provide information on the quality and quantity of environmental impacts in the life cycle phases of any product, system, or service. This article includes all phases of the LCA analysis of a selected streetlight LED luminaire manufactured by a SME where a land?ll deposit is the end-of-life scenario. In a second phase, alternatives are sought for the reuse of the most signi?cant elements that improve its local economy. The results are classi?ed and sorted according to the ISO 14040 standard.

    关键词: LED lighting,streetlight waste,life cycle assessment,recycling,circular economy

    更新于2025-09-23 15:19:57

  • Payback times and multiple midpoint/endpoint impact categories about Building-Integrated Solar Thermal (BIST) collectors

    摘要: The purpose of the present article is the evaluation, by means of life cycle assessment, of a system which consists of vacuum-tube solar thermal collectors. The system is appropriate for building integration and it has been developed in France. The methods ReCiPe and USEtox have been adopted. Regarding life-cycle results, according to the scenario “without recycling” and for 30-year system lifespan, ReCiPe payback time was calculated to be 18.14 years based on France's electricity mix whereas by using Spain's electricity mix (hypothetical scenario) it was found to be 4.03 years. Recycling offers a ReCiPe-payback time reduction of 2.66 years based on France's electricity mix and 0.59 years based on Spain's electricity mix. All the studied cases show ReCiPe payback times much lower than an assumed system-lifespan of 30 years. On the basis of ReCiPe midpoint and by considering material manufacturing of the 16 collectors and the additional elements of the system (scenario “without recycling”), among glass-, aluminium-, copper- and steel-based components, the copper-based ones present the highest impact in 15 of the 18 impact categories. For instance, for Freshwater eutrophication, the copper-based elements have a score that is around 30 times higher comparing to that of the aluminium-based ones. The USEtox ?ndings, for the material manufacturing of the 16 collectors and the supplementary elements of the system and for the scenario “without recycling”, reveal that the material with the highest total score in terms of: i) human toxicity/cancer is copper (6.7E?09 CTUh), ii) human toxicity non-cancer is propylene glycol (4.0E?08 CTUh), iii) ecotoxicity is copper (2.06 CTUe). Recycling of the metals, according to USEtox, offers an impact reduction of 20–95%. A discussion about factors that in?uence the environmental pro?le of building-integrated solar systems is also provided.

    关键词: Vacuum-tube solar thermal collectors,ReCiPe,Building-Integrated Solar Thermal (BIST) system,Life Cycle Assessment (LCA)

    更新于2025-09-19 17:15:36