修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

14 条数据
?? 中文(中国)
  • Enzyme-free “on-off-on” photoelectrochemical biosensor based on cascaded quadratic amplification strategy for miRNA 141 detection

    摘要: MicroRNAs (miRNAs) assay is of great significance for early diagnosis of diseases, so an enzyme-free “on-off-on” PEC biosensor has been developed for sensitive miRNA 141 determination. Manganese-doped cadmium sulfide coupled with zinc sulfide quantum dots (Mn:CdS@ZnS QDs) and manganese porphyrin (MnPP) have been used as photoelectric material and photosensitizer, respectively. And a high photocurrent of approximately 70.0 μA has been obtained. Cascaded quadratic amplification strategy has been applied in the system. Mn:CdS@ZnS QDs was characterized by transmission electron microscopy (TEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX). Photoelectrochemical and electrochemical technologies were used to monitor the fabrication process of the biosensor. The sensing platform exhibits recommendable stability and good selectivity, miRNA 141 can be accurately quantified with a linear range of 1.00 × 10-14 to 1.00 × 10-8 mol·L-1 and the detection limit of 3.30 fmol·L-1. This method provides promising potential to explore sensitive detection models for various biological molecules.

    关键词: Hybridization chain reaction,Catalytic hairpin assembly,Manganese-doped cadmium sulfide coupled with zinc sulfide quantum dots,MiRNA 141,Photoelectrochemistry,On-off-on

    更新于2025-11-14 17:03:37

  • Light-Inducible Exosome-Based Vehicle for Endogenous RNA Loading and Delivery to Leukemia Cells

    摘要: Exosomes are a novel and promising drug delivery platform because of their endogenous origin, stability, biocompatibility, and other unique features. As the efficient loading and delivery of long RNA to target cells for therapeutic purposes remains challenging, a new exosome-based RNA delivery system is proposed using a controllable RNA enrichment and releasing protocol. The system employs RNA aptamer–protein interactions and reversible light-inducible protein–protein interaction modules by remolding exosome producer cells. Endogenous microRNA 21 (miR-21) sponges, inhibitors of miR-21, are successfully enriched on the plasma membrane and are sorted into exosomes by the biogenesis of the exosomes. The loading capacity of miR-21 sponges is enhanced by 14-fold in the light-inducible loading system. In addition, targeted delivery of miR-21 to leukemia cells is achieved by modifying exosomes with the cholesterol-conjugated aptamer AS1411, resulting in significant cell apoptosis by blocking the function of miR-21 in leukemia cells. This work provides an exosome-based light-inducible vehicle to efficiently load and deliver long endogenous RNA, which can enable more RNA-based therapeutics for personalized cancer medicine.

    关键词: miRNA sponge,leukemia,RNA enrichment,exosomes,reversible light-inducible vehicles,aptamers

    更新于2025-09-23 15:23:52

  • Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor

    摘要: MicroRNA exhibits differential expression levels in cancer and can affect cellular transformation, carcinogenesis and metastasis. Although fluorescence techniques using dye molecule labels have been studied, label-free molecular-level quantification of miRNA is extremely challenging. We developed a surface plasmon resonance sensor based on two-dimensional nanomaterial of antimonene for the specific label-free detection of clinically relevant biomarkers such as miRNA-21 and miRNA-155. First-principles energetic calculations reveal that antimonene has substantially stronger interaction with ssDNA than the graphene that has been previously used in DNA molecule sensing, due to thanking for more delocalized 5s/5p orbitals in antimonene. The detection limit can reach 10 aM, which is 2.3–10,000 times higher than those of existing miRNA sensors. The combination of not-attempted-before exotic sensing material and SPR architecture represents an approach to unlocking the ultrasensitive detection of miRNA and DNA and provides a promising avenue for the early diagnosis, staging, and monitoring of cancer.

    关键词: surface plasmon resonance,biosensor,antimonene,cancer diagnosis,miRNA detection

    更新于2025-09-23 15:23:52

  • Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection

    摘要: We report a sensitive, yet low-cost biosensor based on laser induced graphene for femtomolar microRNA (miRNA) detection. Combined with the miRNA extraction and magnetic isolation process, the target miRNAs were purified for further detection using laser induced graphene sensor. The laser induced graphene was prepared by direct laser writing on commercial polyimide (PI) and patterned via a computer-aided design system as an electrode for electrochemical biosensing. We found that the laser reduction of PI resulted in nitrogen-doped porous graphene, not only improving its conductivity but also its sensitivity to nucleic acids. Preeclampsia specific miRNA hsa-miR-486-5p was magnetically purified and directly adsorbed on the surface of graphene electrode via graphene-miRNA affinity interaction. Surface attached miRNAs were then electrochemically quantified using [Fe(CN)6]3-/4- redox system. Our assay demonstrates detection of miRNA has-miR-486-5p up to concentrations as low as 10 fM with excellent reproducibility. Owing to its facile fabrication, low cost and high performance, the laser induced N-doped graphene biosensor presented here shows great potential for applications in detecting miRNA in biomedical applications.

    关键词: electrochemical biosensor,porous graphene,laser induced graphene,nitrogen-doped,miRNA detection

    更新于2025-09-23 15:21:01

  • One-step fabrication of trimetallic alloy nanozyme catalyzer for luminol-H2O2 chemiluminescence and its application for miRNA-21 detection coupled with miRNA walking machine

    摘要: PtCuCo trimetallic alloys (PtCuCo-TAs) are synthesized by one-step reduction. The chemiluminescence (CL) properties of PtCuCo-TAs are studied systemically. PtCuCo-TAs show good catalyzing for luminol-H2O2 system. A CL platform is developed for the detection of miRNA-21 using PtCuCo-TAs as nanozyme catalyzer. In the CL detection platform, H1 (Hairpin DNA1) is immobilized onto magnetic beads (MBs) firstly. In the presence of miRNA-21, H1 is opened. H2 (Hairpin DNA2) then hybridizes with H1. Meanwhile, a "cleat" in the end of miRNA-21 with a fewer bases complementary is formed to prevent miRNA-21 dissociating from H1. This miRNA-21 hybridizes to another H1. When cpDNA-PtCuCo-TAs which consisted with cDNA (Complementary strand of probe DNA) and pDNA-PtCuCo-TAs (PtCuCo-TAs labeled with probe DNA) are added, the ssDNA region of H1 reacts with the toehold domain of probe DNA and cDNA is released resulting pDNA-PtCuCo-TAs being captured. With this process repeatedly, a lot of pDNA-PtCuCo-TAs are captured onto MBs. After separation and washing, the precipitate and H2O2 are put into the 96-well and luminol solution is injected. The CL signal is produced by PtCuCo-TAs catalyzing luminol-H2O2 system. The amount of miRNA-21 is detected with CL signal. This CL platform performs with limit of detection 0.167 fM and has good selectivity over other RNA.

    关键词: Enzyme-free,miRNA-21,Nanocatalyst,One-step,Trimetallic alloys

    更新于2025-09-23 15:21:01

  • Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155

    摘要: A promising nanocarrier of the complementary DNA (cDNA) toward miRNA-155 was synthesized on the basis of the nanohybrid type of Ti3C2Tx MXene nanosheets decorated using iron phthalocyanine quantum dots (FePc QDs) (denoted as Ti3C2Tx@FePcQDs) to construct a novel ultrasensitive impedimetric aptasensing system for microRNA-155 (miRNA-155). Owing to π–π* stacking interaction between Ti3C2Tx nanosheets and FePc QDs, the homogeneous nanostructure of the Ti3C2Tx@FePcQD nanohybrid that comprises mixed-valence states (Ti2+/Ti3+ and Fe2+/Fe3+), multicomponent (Ti-O and Ti-C), and various N-related groups was achieved. The constructed Ti3C2Tx@FePcQDs-based aptasensor displayed an ultrahigh sensitivity for detecting miRNA-155 with a low detection limit of 4.3 aM (S/N = 3) within the miRNA-155 concentration ranging from 0.01 fM to 10 pM. Compared with the individual component-based aptasensors and other reported miRNA-155 aptasensors, the proposed impedimetric aptasensing system exhibited substantial merits of a feasible preparation process, non-use of labels or electrochemical indicators, fast response time, and comprehensive sensing performances for detecting miRNA-155. This strategy for determining miRNAs can extensively be applied as the platform for anchoring other kinds of aptamers in detecting diverse targets, thus indicating its great potential application for the early diagnosis of cancer biomarkers.

    关键词: Impedimetric aptasensing,Iron phthalocyanine,Nanohybrid,Detection of miRNA-155,Ti3C2Tx MXene nanosheets,Electrochemical aptasensor

    更新于2025-09-23 15:19:57

  • Simple, Amplified, and Multiplexed Detection of MicroRNAs Using Time-Gated FRET and Hybridization Chain Reaction

    摘要: Hybridization chain reaction (HCR) is a simple and sensitive method for quantifying nucleic acids. Current approaches cannot combine a washing-free sensing format with multiplexed target quantification at low concentrations, which would be highly desirable for detection both in solution and in situ. Here, we demonstrate the implementation of time-gated F?rster resonance energy transfer (TG-FRET) between terbium donors and dye acceptors into HCR for multiplexed quantification of microRNAs (miR-20a and miR-21) and their DNA analogues. HCR-TG-FRET provided washing-free nucleic acid quantification with very low limits of detection down to 240 attomoles (1.7 pM) of microRNA and 123 attomoles (0.88 pM) of DNA. Efficient distinction from very homologous microRNAs demonstrated high target specificity. Multiplexing with a single measurement, a single excitation wavelength, and a single FRET pair allowed for a simultaneous quantification of miR-20a and miR-21 at concentrations between 30 pM and 300 pM from the same sample. HCR-TG-FRET showed similar performance for serum-free and serum-containing samples without the use of RNase inhibitors. Our results present a significant improvement of current HCR approaches regarding simplicity, sensitivity, and multiplexing. The versatile diagnostic performance of HCR-TG-FRET even in challenging biological environments presents an important advantage for advanced nucleic acid biosensing.

    关键词: miRNA,mRNA,fluorescence,diagnostics,DNA,biosensing

    更新于2025-09-19 17:15:36

  • Optical nanogap antennas as plasmonic biosensors for the detection of miRNA biomarkers

    摘要: Nanoplasmonic biosensors based on nanogap antennas structures usually demand complex and expensive fabrication processes in order to achieve a good performance and sensitive detection. We here report the fabrication of large-area nanoplasmonic sensor chips based on nanogap antennas by employing a customized, simple and low-cost colloidal lithography process. By precisely controlling the angle for tilted e-beam metal evaporation, an elliptical mask is produced, which defines the total length of the dipole antenna nanostructures while assuring that the plasmonic response is oriented in the same direction along the sensor chip. Large-area sensor chips of nanogap antennas formed by pairs of gold nanodisks separated by gaps with an average size of 11.6 ± 4.7 nm are obtained. The optical characterization of the nanogap antenna structures in an attenuated total reflection (ATR) configuration shows a bulk refractive index sensitivity of 422 nm/RIU, which is in agreement with FDTD numerical simulations. The biosensing potential of the cm2-sized nanostructured plasmonic sensor chips has been evaluated for the detection of miRNA-210, a relevant biomarker for lung cancer diagnosis, through a DNA/miRNA hybridization assay. A limit of detection (LOD) of 0.78?nM (5.1 ng mL-1) was achieved with no need of further amplification steps, demonstrating the high sensitivity of these plasmonic nanogap antennas for the direct and label-free detection of low molecular weight biomolecules as miRNAs.

    关键词: nanoplasmonic biosensors,miRNA biomarkers,colloidal lithography,nanogap antennas,lung cancer diagnosis

    更新于2025-09-19 17:13:59

  • A light‐triggerable nanoparticle library for the controlled release of non‐coding RNAs

    摘要: RNA-based therapies offer a wide range of therapeutic interventions including for the treatment of skin diseases; however, the strategies to deliver efficiently these biomolecules are still limited due to obstacles related to the cellular uptake and cytoplasmic delivery. Herein, we synthesized a triggerable polymeric nanoparticle (NP) library composed by 160 formulations, presenting physico-chemical diversity and differential responsiveness to light. Six formulations were more efficient (up to 500%) than commercial Lipofectamine in gene knockdown activity. These formulations had differential internalization by skin cells and the endosomal escape was rapid (minutes range) as shown by the recruitment of galectin-8. The NPs were effective in the release of siRNA and miRNA. Acute skin wounds treated with the top hit NP complexed with miRNA-150-5p healed faster than wounds treated with scramble miRNA. Light-activatable NPs offer a new strategy to deliver topically non-coding RNAs.

    关键词: light-triggerable nanoparticles,siRNA,non-coding RNAs,wound healing,miRNA

    更新于2025-09-11 14:15:04

  • MicroRNA Quantitation During Dendritic Cell Endocytosis Using Imaging Flow Cytometry: Key Factors and Requirements

    摘要: Background/Aims: MicroRNA (miRNA)-induced suppression of dendritic cells (DCs) has been implicated in many diseases. Therefore, accurate monitoring of miRNA endocytosis by DCs is important for understanding the role of miRNAs in many diseases. Recently, a method for measuring the co-localization of Argonaute 2 (AGO2)-associated miRNAs on laser-scanning confocal microscopy method was proposed to localize the miRNAs. But its definition was limited by the number of observed cells through its accuracy. Methods: In this study, a method based on imaging flow cytometry was developed to localize miR-590-5p with fluorescent probes in DCs. miR-590-5p proven to play an important role in tumor immunity. This method enabled the quantification, visualization and localization of the fluorescence intensity in 30,000 individual cells. Results: Using this method, the DCs with different endocytotic ability were distinguished. The behaviour of miR-590-5p during endocytosis under the stimulation of tumor antigen in DCs was observed, binding to its cognate target mRNA and degradation in DCs. Conclusion: This method based on imaging flow cytometry provide an additional method to study miRNA processing in DCs, which makes it a valuable addition to existing miRNA research techniques

    关键词: miR-590-5p,miRNA endocytosis,Flow cytometry,Dendritic cells,Argonaute 2 (AGO2),FRET analysis

    更新于2025-09-10 09:29:36