修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

93 条数据
?? 中文(中国)
  • Resonant modal analysis and dual-mode tailoring in high refractive index contrast two-dimensional nanorod arrays

    摘要: Resonant modal analysis and dual-mode tailoring in high refractive index contrast two-dimensional (2-D) nanorod arrays are proposed. The specific modes of the guided mode resonances (GMRs) excited by the 2-D nanorod arrays can be distinguished based on the equivalent medium theory (EMT) and the analysis of the electric/magnetic fields. The broadband reflection and enhanced transmission can be obtained by the tailoring between the resonant dual-mode of the 2-D nanorod arrays. It is shown that the 2-D nanorod arrays can support the excitation of the resonant dual-mode with low-quality factor (low-Q) TM0 and high quality factor (high-Q) TE0 modes on a reflection broadband. The coupling of the edges of the resonant dual-mode can be tailored to create the resonant transmission with polarization independence near 1.31 μm. By merely changing the angle of incidence, one can achieve triple transmission channels due to the interaction of the nondegenerate resonant dual-modes.

    关键词: Dual-mode tailoring,Modal analysis,Two-dimensional nanorod arrays,Guided mode resonance

    更新于2025-09-23 15:19:57

  • Surface plasma Ag-decorated single-crystalline TiO2?x(B) nanorod/defect-rich g-C3N4 nanosheet ternary superstructure 3D heterojunctions as enhanced visible-light-driven photocatalyst

    摘要: Ag-TiO2-x(B)/g-C3N4 ternary heterojunctions photocatalysts are fabricated by hydrothermal-calcination, photo-deposition procedure, and followed by in-situ solid-state chemical reduction procedure. As-obtained photocatalysts are consisted with heterojunctions between 2D g-C3N4 sheets and 1D TiO2(B) single-crystalline nanorods. The band gap of Ag-TiO2-x(B)/g-C3N4 ternary heterojunctions photocatalysts is reduced to ~2.23 eV due to plasma Ag and surface engineering. Under visible light irradiation, it has an optimal photocatalytic property for the reduction of Cr6+ (95%) and degradation of NH4+ (93%). The apparent reaction rate constants (k) of ternary heterojunctions photocatalysts for NH4+ and Cr6+ are 25 and 12 folds higher than that of original TiO2(B). Furthermore, Ag-TiO2-x(B)/g-C3N4 also has excellent hydrogen production efficiency, which is up to 410 mmol h-1 g-1. This enhancement can be attributed to the unique heterojunction formed by 1D single-crystalline TiO2(B) nanorods and 2D g-C3N4 sheets, surface plasma resonance effect of plasma Ag nanoparticle, and surface engineering. A possible photocatalytic mechanism is also proposed by analysizing the XPS valence-band spectra and the Mott-Schottky.

    关键词: Surface engineering,g-C3N4 sheet,Visible-light-driven photocatalysis,Single-crystalline TiO2(B) nanorod,Heterojunction

    更新于2025-09-19 17:15:36

  • Enhanced hydrogen sensing properties of Pd-coated SnO2 nanorod arrays in nitrogen and transformer oil

    摘要: We report enhanced sensing properties of Pd-coated SnO2 nanorod (NR) arrays for detecting H2 gas in N2 and dissolved in transformer oil. The Pd nanoparticles were coated on randomly ordered vertical SnO2 NR arrays by the glancing angle deposition (GLAD) method, which utilizes an electron-beam evaporator and a DC magnetron sputtering system. The Pd-coated SnO2 NR arrays exhibited high response (104 at 1% H2) in N2. Pd-coated SnO2 NR arrays were immersed and in mineral oil that contains various concentrations of dissolved H2 and the electrical response was measured. We found that the Pd-coated SnO2 NR arrays showed superior response (R = ?96), low detection limit (0.3 ppm), and fast response times (300 s). The Pd-coated SnO2 NR arrays had a temperature coefficient of resistance (TCR) of 3.69 × 10-3 °C-1 at various oil temperatures (20–80 °C), indicating good thermal stability at high temperatures. The sensing mechanism of the Pd-coated SnO2 NR arrays was also demonstrated by using changes in the Schottky barrier height at the Pd/SnO2 interface upon exposure to H2.

    关键词: Pd,SnO2,Transformer oil,Nanorod arrays,Hydrogen sensing

    更新于2025-09-19 17:15:36

  • Niobium doped TiO2 nanorod arrays as efficient electron transport materials in photovoltaic

    摘要: One-dimensional (1-D) rutile TiO2 nanorod arrays (NRAs) synthesized by a hydrothermal method suffer from low electrical conductivity and large amounts of surface defects, hindering their further applications. Nb doping is thus introduced to modify their electronic properties. Results indicate that light Nb doping reduces rod nanosizes, increases electron concentrations, decreases surface defective oxides and lowers conduction band of the TiO2 NRAs, while heavy doping induces transformations of morphologies and crystalline orientations as well as occurrences of compositional deviations and low oxidative states of Ti3t. After 0.1 mol% and 1 mol% Nb incorporations, device efficiencies are substantially improved by ~16% and ~33% for the model perovskite and dye-sensitized solar cells, respectively, which are ascribed to reduced recombination at the perovskite/TiO2 interfaces (e.g. charge lifetime increasing from 62 μs to 107 μs) and improved electron transport through the photoanode of TiO2 NRAs (e.g. electron diffusion length increasing from ~14 μm to ~50 μm). Our study verifies that Nb doped 1-D TiO2 NRAs are versatile electron transporting materials in different kinds of emerging solar cells, and are also potential for other fields including photocatalysis, sensors and batteries etc.

    关键词: TiO2 nanorod array,Dye-sensitized solar cell,Niobium doping,Charge transport,Perovskite solar cell,Recombination

    更新于2025-09-19 17:13:59

  • Efficient Nanorod Arrays Perovskite Solar Cells: A Suitable Structure for High Strontium-Substitution in a Nature Environment

    摘要: Organic-inorganic hybrid perovskite solar cells (PSCs) have become a research hotspot because of their excellent power conversion efficiency (PCE), but the presence of toxic lead (Pb) in perovskite film has significantly limited their commercial application. In this study, using a TiO2 nanorod arrays (TNRAs) as the electron transport layer (ETL), strontium chloride (SrCl2) was chosen to fabricate lead-less PSCs in air environment (relative humidity, RH=50%) by a simple two-step spin-coating method. The influence of introduced strontium (Sr) on the perovskite films and cell properties was systematically investigated by various characterization methods. With increasing Sr substitution amount from 0 to 15 mol%, the formed perovskite films with a compact structure and a large crystalline size essentially remained invariable, while residual PbI2 was reduced, which is beneficial for the cell performance. The optimal PCE of 16.08% (average PCE = 15.37%) was obtained for the 5 mol% Sr-substituted PSCs because of the enhanced charge extraction from the perovskite film to the TNRAs and the suppressed charge recombination in the PSC. Both the humidity and thermal stability of the Sr-substituted PSCs were improved. More importantly, the 15 mol% Sr-substituted PSCs still exhibited a PCE of 15.09% in air (RH = 50%), maintaining 99% of the cell efficiency of the pristine (0 mol% Sr) PSC (15.27%), suggesting that the TNRAs structure is suitable for synthesis of high Sr-substituted lead-less PSCs.

    关键词: Lead-less perovskite solar cells,TiO2 nanorod arrays,Defect density,Strontium substitution,Recombination

    更新于2025-09-19 17:13:59

  • Effect of reduced graphene oxide addition on the performance of zinc oxide nanorod based dye-sensitized solar cell

    摘要: As one of third generation photovoltaic device, dye-sensitized solar cell (DSSC) plays important part in search for new and renewable energy resources. As part of this device, dye has a very critical function due to its responsibility in absorbing the photon energy from the sunlight. The more light can be absorbed, the higher the value of photon to electricity conversion efficiency can be obtained. For increasing the absorption capacity of the dye, this work investigated the effect of reduced graphene oxide (rGO) addition into the dye solution with rGO to dye weight % ratio of 1:100; 3:100; and 5:100 respectively. On the basis of investigation, it was found that the ratio of 3:100 produced a higher power conversion efficiency (PCE) of about 0,02% as compared to the reference cells which displayed a value of 0,005%. It confirms that introducing rGO into the dye can enhance the DSSC performance, though several fabrication handling procedures still need to be improved as well.

    关键词: dye-sensitized solar cell,power conversion efficiency,reduced graphene oxide,zinc oxide nanorod

    更新于2025-09-19 17:13:59

  • A Comparison Between Different Structures of Perovskite Nanorod Solar Cells

    摘要: Perovskite is considered a very promising material in solar energy harvesting. Combining the advantages of Perovskite material and nanorod structure, Perovskite nanorod solar cell (PNSC) is believed to achieve a high conversion efficiency with low cost and simple fabrication processes. The rapid increasing efficiency of fabricated PNSC increases the demand for an efficient and accurate modeling that can simulate the parameters performance of the cell and estimate the important outputs. In this work, we simulate different structures of Perovskite nanorod solar cells namely; cylindrical rod, cone rod, inverted-cone rod, and modulated rod. The simulation is based on the finite element method. The material of the modeled cell is TiO2/CH3NH3PbI3 and we optimize the rod length, radius and spacing between rods for all structures to achieve the maximum conversion efficiency. The best efficiency is 18.6% for a cell of cylindrical rod of rod length, rod radius and rods spacing equal 400nm, 5nm and 65nm, respectively.

    关键词: Perovskite,Nanorod,Photovoltaic

    更新于2025-09-19 17:13:59

  • A solid-state integrated photo-supercapacitor based on ZnO nanorod arrays decorated with Ag <sub/>2</sub> S quantum dots as the photoanode and a PEDOT charge storage counter-electrode

    摘要: A planar solid-state photocapacitor with two electrodes has been prepared for the first time using a passivated film of ZnS with Ag2S quantum dots deposited on ZnO nanorods, which were electrochemically grown on ZnO seed layers, as the photoanode. The supercapacitor part is composed of a electrodeposited poly(3,4-ethylene-dioxythiophene) PEDOT film as the counter-electrode and an ionic liquid-based electrolyte between them deposited by the dip coating method. The different nanostructures and electrodes were morphologically and structurally characterized, and the device was electrochemically characterized and could reach a potential of 0.33 V during photocharge and a storage efficiency of 6.83%.

    关键词: solid-state,ZnO nanorod arrays,electrochemical characterization,PEDOT,photo-supercapacitor,Ag2S quantum dots

    更新于2025-09-19 17:13:59

  • Ultra-High Refractive Index Sensing Structure Based on a Metal-Insulator-Metal Waveguide-Coupled T-Shape Cavity with Metal Nanorod Defects

    摘要: An ultra-high plasmonic refractive index sensing structure composed of a metal–insulator–metal (MIM) waveguide coupled to a T-shape cavity and several metal nanorod defects is proposed and investigated by using finite element method. The designed plasmonic MIM waveguide can constitute a cavity resonance zone and the metal nanorod defects can effectively trap the light in the T-shape cavity. The results reveal that both the size of defects in wider rectangular cavity and the length of narrower rectangular cavity are primary factors increasing the sensitivity performance. The sensitivity can achieve as high as 8280 nm/RIU (RIU denotes the refractive index unit), which is the highest sensitivity reported in plasmonic MIM waveguide-based sensors to our knowledge. In addition, the proposed structure can also serve as a temperature sensor with temperature sensitivity as high as 3.30 nm/°C. The designed structure with simplicity and ease of fabrication can be applied in sensitivity nanometer scale refractive index sensor and may potentially be used in optical on-chip nanosensor.

    关键词: T-shape cavity,nanorod defects,temperature sensor,finite element method,refractive index sensor,metal–insulator–metal,plasmonics,sensitivity

    更新于2025-09-19 17:13:59

  • Lattice Distortion in Hollow Multi‐shelled Structures for Efficient Visible Light CO2 Reduction with SnS2/SnO2 Junction

    摘要: When nanoparticles interact with cellular or organelle membranes, the coating ligands are known to affect the integrity of the membranes, which regulate cell death and inflammation. However, the molecular mechanisms of this modulation remain unresolved. Here, we use synchrotron X-ray liquid surface scattering and molecular dynamics simulations to study interface structures between phospholipids and gold nanorods (AuNRs) coated by surfactant and polyelectrolyte. These ligands are two types of widely used surface modification with different self-assembled structures and stabilities on the surface of nanoparticles. We reveal distinct mechanisms of the ligand stability in disrupting membrane integrity. We find that the cationic surfactant ligand cetyltrimethylammonium bromide detaches from the AuNRs and inserts into phospholipids, resulting in reduced membrane thickness by compressing the phospholipids the cationic polyelectrolyte ligand poly- ligand. Conversely, (diallyldimethylammonium chloride) is more stable on AuNRs; although it adsorbs onto the membrane, it does not cause much impairment. The distinct coating ligand interactions with phospholipids are further verified by cellular responses including impaired lysosomal membranes and triggered inflammatory effects in macrophages. Together, the quantitative analysis of interface structures elucidates key bio?nano interactions and highlights the importance of surface ligand stability for safety and rational design of nanoparticles.

    关键词: phospholipid,X-ray liquid surface scattering,gold nanorod,membrane integrity,ligand stability

    更新于2025-09-19 17:13:59