修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • High-efficiency non-halogenated solvent processable polymer/PCBM solar cells <i>via</i> fluorination-enabled optimized nanoscale morphology

    摘要: PNTz4T-based polymers have been extensively employed in high-efficiency fullerene-based polymer solar cells (PSCs) with a power conversion efficiency (PCE) of approximately 10.0% due to the high crystallinity of these polymers. The introduction of two fluorine atoms into PNTz4T to synthesize the PNTz4T-2F polymer has boosted the PCE to 10.6%, but the introduction of four fluorine atoms to synthesize the PNTz4T-4F polymer negatively affects the efficiency (PCE ? 6.5%), implying that the number of fluorine atoms is not yet optimized. We have developed a new synthetic route for a novel monofluoro-bithiophene monomer and successfully synthesized a novel PNTz4T-1F polymer. The fullerene-based PSCs based on our novel PNTz4T-1F polymer processed using a halogen-free solvent system demonstrated an outstanding PCE of 11.77% (11.67% certified), representing the highest PCE reported thus far in the literature. Due to the optimum molecular ordering/packing, improved interaction with PC71BM and interconnectivity between photoactive material domains, PNTz4T-1F-based PSCs exhibit lower charge carrier recombination and enhanced charge carrier mobility levels, leading to a substantially high photocurrent density (20.37 mA cm(cid:2)2). These results create new means to tune the structural properties of polymers, ultimately leading to the realization of this class of solar cells for practical applications.

    关键词: polymer solar cells,nanoscale morphology,halogen-free solvent,power conversion efficiency,fluorination

    更新于2025-09-16 10:30:52

  • Optimizing nanoscale morphology and improving Carrier transport of PCDTBT-PCBM bulk heterojunction by cyclic carboxylate nucleating agents

    摘要: In this work, four cyclic carboxylate commercial nucleating agents, bicyclo [2.2.1] heptane-2,3-dicarboxylic acid disodium salt (HPN-68L), sodium salt of hexahydrophthalic acid (HHPA-Na), sodium benzoate (Be-Na) and calcium salt of hexahydrophthalic acid (HPN-20E) were respectively added into poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’ benzothiadi-azole)] (PCDTBT)-[6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend. Atomic force microscopy (AFM) and UV-vis measurements indicate that the addition of carboxylic acid sodium salts can effectively optimize the morphology of active layer, decrease the phase domain size and increase the optical absorption intensity of PCDTBT-PCBM blends. The PCDTBT-PCBM-additive ternary devices were fabricated and found that adding carboxylic acid sodium salts can improve the hole mobility, balance the hole and electron mobility and finally increase the power conversion efficiency (PCE). Fixed the additive content as 5%, the modulation ability of the bicyclic dicarboxylic acid sodium salt HPN-68L is best, monocyclic dicarboxylic acid sodium salt HHPA-Na comes second, monocyclic carboxylic acid sodium salt Be-Na is worst. The addition of carboxylic acid calcium salt HPN-20E has no effects on the morphology and optical absorption intensity of the PCDTBT-PCBM blend, and the photoelectric properties of PCDTBT-PCBM-HPN-20E ternary device decreases in comparison with those of pristine PCDTBT-PCBM binary device. The modulation ability of cyclic carboxylate is related to its surface free energy and its location in the PCDTBT-PCBM blend. HPN-68L locates in the interfacial region between PCDTBT and PCBM, other cyclic carboxylates locates in the PCBM. Our finding suggests the addition of cyclic carboxylic acid sodium salts can be a facile approach to optimize the morphology and increase the electrical properties of organic materials for future development of organic photovoltaic devices.

    关键词: PCDTBT-PCBM bulk heterojunction,carrier transport,organic photovoltaic devices,cyclic carboxylate nucleating agents,nanoscale morphology

    更新于2025-09-09 09:28:46