- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
EFFECT OF VOLTAGE ON TIO2 NANOTUBES FORMATION IN ETHYLENE GLYCOL SOLUTION
摘要: Anodization of Ti foils in ethylene glycol (EG) containing ammonium fluoride (NH4F), and hydrogen peroxide (H2O2) was carried out to study the effect of voltage on the formation of TiO2 nanotubes. The crystalline phase of the TiO2 nanotubes without further heat treatment were studied. The TiO2 nanotube arrays were produced by anodization of Ti foil at three different voltage; 10, 40, and 60 V in a bath with electrolytes composed of ethylene glycol (EG), ammonium fluoride (NH4F), and hydrogen peroxide (H2O2). The H2O2 is a strong oxidizing agent which was used as oxygen provider to increase the oxidation rate for synthesizing highly ordered and smooth TiO2 nanotubes. Anodization at voltage greater than 10 V leads to the formation of tubular structure where higher anodization voltage (~ 60 V) yield to larger tube diameter (~ 180 nm). Crystallinity of the nanotubes is improved as the voltage was increased. The transformation of amorphous to anatase can be obtained for as anodized TiO2 without any heat treatment. The Raman spectra results show the anodization at 40 V and 60 V gives anatase peak in which confirms the crystalline phase. The stabilization of the crystalline phase is due to the oxygen vacancies and ionic mobilities during the anodization at high voltage.
关键词: anatase,TiO2 nanotubes,crystallization,anodization
更新于2025-09-23 15:23:52
-
Rod in Tube: A Novel Nanoplatform for Highly Effective Chemo-photothermal Combination Therapy Towards Breast Cancer
摘要: Gold nanorods (GNRs) and doxorubicin (DOX) were loaded into the lumen of halloysite nanotubes (HNTs) via a rapid synthesis process (2 min) and physical adsorption. The targeting molecules of folic acid (FA) are then conjugated to HNTs via reactions with bovine serum albumin (BSA). The formation of GNRs in HNTs was verified by different techniques. The Au-HNTs-DOX@BSA-FA shows maximum of 26.8 oC temperature rising after 8 min 808-nm laser irradiation under 0.8 W cm-2. The functionalized HNTs exhibited stronger chemotherapeutic effect under laser irradiation, since the laser could promote the release of DOX and temperature rising. Au-HNTs-DOX@BSA-FA treated MCF-7 cells exhibited survival rate of 7.4% after laser irradiation. Au-HNTs-DOX@BSA-FA treatment do not induce an obvious toxicity in blood biochemistry, liver and kidney function in normal mice. In vivo chemo-photothermal treatment towards 4T1-bearing mice suggested Au-HNTs-DOX@BSA-FA exhibited remarkable tumor-targeted efficiency and good controlled-release effect for DOX. Also, the nanoparticles exhibited a rapid photothermal performance and inhibiting ability of the growth of tumor. Due to the synergistic effect of chemical-photothermal therapy, the toxicity of DOX to normal tissues was reduced on the premise of ensuring the same curative effect with a low dosage of 0.32 mg kg-1. This novel chemo-photothermal therapy nanoplatform provided a safe, rapid, effective, and cheap choice for treatment of breast tumor both in vitro and in vivo.
关键词: doxorubicin,photothermal therapy,halloysite nanotubes,chemo-photothermal therapy,gold nanorods
更新于2025-09-23 15:23:52
-
Theoretical and experimental insights into the effects of oxygen-containing species within CNTs towards triiodide reduction
摘要: Heteroatom-doped micro/nano-structured carbon materials feature unique superiorities for replacement of noble metal Pt counter electrode (CE) in dye-sensitized solar cells. Nevertheless, the effects of oxygen-containing species on/within carbon matrix on its electrocatalytic activity are seldomly considered and concerned, which will be hindered by a trade off between oxygen defects and conductivity. Herein, we present activated carbon nanotubes (P-CNTs) with abundant active edge sites and oxygen species for simultaneous achieving the activation of sidewalls and open ends. Also, the positive effects of oxygen species are decoupled by experimental data together with theoretical analysis. When capitalizing on the P-CNTs as the CE of DSSCs, the device delivers a high power conversion efficiency of 8.35% and an outstanding electrochemical stability, outperforming that of Pt reference (8.04%). The density functional theory calculation reveals that compared with the carboxylic groups, the hydroxyl groups and carbonyl groups on the surface of CNTs can greatly reduce the ionization energy of reaction, accelerate the electron transfer from external circuit to triiodide, thus being responsible for an enhanced electrocatalytic performance. This work demonstrates that a certain amount of oxygen atoms within carbon materials is also indispensable for the improvement in the reactivity of the triiodide.
关键词: Counter electrodes,Triiodide reduction,Defective carbon nanotubes,Ionization energy,Electrochemical stability,Oxygen species
更新于2025-09-23 15:23:52
-
Targeting carbon nanotubes based on IGF-1R for photothermal therapy of orthotopic pancreatic cancer guided by optical imaging
摘要: Pancreatic cancer is one of the most lethal malignancies worldwide. The existing therapeutic regimen in the clinic for advanced inoperable carcinomas are far from satisfactory, thus it is urgent to seek more effective anticancer strategies. In the pursuit of novel, more effective interventions, photothermal therapy (PTT) based on nanomaterials has attracted increased attention. Recent advances in related fields have catalyzed the generation of novel nanoprobes, such as organic dyes, metal nanoparticles. However, organic dyes are poorly stable and easy to quench while metal nanoparticles with potential metal toxicity are difficult to degrade, both of which have low light-to-heat conversion efficiency, broad spectrum of anti-tumor effects, and lack of tumor targeting specificity. Single-walled carbon nanotubes (SWNTs) can remedy the above inadequacies. Herein, we report our water-soluble, bio-stable and low-toxicity SWNTs with excellent photothermal conversion efficiency. Specific modifications can enable visualization of the aggregate characteristics of SWNTs at the macroscopic or microscopic level in tumors. The dye-conjugated SWNTs bound with targeting antibodies that can induce them specifically targeting to pancreatic tumors for purposes of performing dyes imaging-guided cytotoxic PTT. PTT using this method achieves precise and excellent curative effects with minimal adverse effects, thus providing a promising strategy for anticancer therapy.
关键词: Single-walled carbon nanotubes,Imaging,IGF-1R,Pancreatic cancer,Photothermal therapy
更新于2025-09-23 15:23:52
-
State-of-the art non-destructive techniques for defects detection in nanocomposites foam-core sandwich panels containing carbon nanotubes: IR thermography and microwave imaging
摘要: In this article, the state-of-the art of infrared (IR) thermography and microwave non-destructive (NDT) testing for inspection of defects in carbon nanotubes-based nanocomposite sandwich panels has been presented. Di?erent types of defects such as holes, notches and inclusion (Te?on) have been simulated in the polymeric foam-core of sandwich panels. The infrared (IR) thermography and microwave methods have been conducted to assess the simulated defects in the sandwich panel. The thermography results revealed that the thermal energy absorbance was higher in sandwich panel containing multi-walled carbon nanotubes (MWCNTs), however, various types of defects were well detected in both specimens with and without MWCNTs. From the result of microwave imaging, the same probability of NDT inspection was observed for detecting subsurface defects in sandwich panel and its nanocomposites. The use of low content of MWCNT (0.5 wt%) did not signi?cantly a?ect on the microwave absorption properties of sandwich panel among NDT procedure, however some changes of re?ection coe?cient amplitude in selected frequency bands were observable.
关键词: Multi-walled carbon nanotubes,Sandwich structures,Non-destructive testing,Nanocomposites
更新于2025-09-23 15:23:52
-
Resonant Enhancement of THz Radiation Through Vertically Aligned Carbon Nanotubes Array by Applying Wiggler Magnetic Field
摘要: The present analysis develops a novel theory of terahertz radiation generation by beating of two laser beams, incident obliquely on the array of vertically aligned carbon nanotubes (CNTs) in the presence of an external wiggler magnetic field. The array of CNTs behaves as nanoantenna to generate THz radiations. The incident lasers exert a ponderomotive force on the electrons of the CNTs to produce nonlinear oscillatory velocity, which beats with the applied wiggler magnetic field. This beating produces a nonlinear current at (ω2 ? ω1, k2 ? k1 + k0) which acts as an antenna to produce the THz radiation. We observe that when the beat frequency (ω2 ? ω1) lies near the effective plasmon frequency of the CNTs, strong THz radiation is produced due to a resonant interaction of the laser with CNT electrons. The externally applied wiggler magnetic field enhances the efficiency of THz radiation of nanoantenna by providing the necessary momentum to the generated THz radiation. We explore the impact of radius and length of nanotubes on the efficiency of THz generation. The generated THz power is enhanced at an optimum angle of incidence of lasers with an array of CNTs.
关键词: THz radiation,Carbon nanotubes,Antenna theory,Wiggler magnetic field,Plasma,Nanotechnology
更新于2025-09-23 15:23:52
-
Photo-refreshable electrochemical sensor based on composite electrode of carbon nanotubes and TiO2 nanoparticles
摘要: Surface fouling and passivation on the electrode during electrochemical process is a major challenge for the practical applications of electrochemical sensors. Herein, a photo-refreshable electrochemical sensor was presented based on carbon nanotubes/TiO2 nanoparticles (CNTs/TiO2-NPs) composite electrode, which not only exhibits high electrochemical activity towards the determination of 5-hydroxytryptamine and dopamine, but also displays excellent reproducibility in the surface electrochemical monitoring without damaging microstructure. The linear range for 5-hydroxytryptamine determination is 0.5-400 μM (R=0.991) under UV light irradiation with a detection limit of 0.47 μM (S/N=3). The CNTs/TiO2-NPs electrode also shows excellent response to dopamine, with the linear range of 0.05 μM to 100 μM and a detection limit of 0.022 μM (S/N =3). The high performance of this photo-refreshable electrochemical sensor should be attributed to the excellent photocatalytic activity of the TiO2-NPs and the high electrochemical activity of CNTs.
关键词: carbon nanotubes,photocatalysis,TiO2 nanoparticles,electrochemical sensors,surface fouling
更新于2025-09-23 15:22:29
-
[IEEE 2018 International Semiconductor Conference (CAS) - Sinaia (2018.10.10-2018.10.12)] 2018 International Semiconductor Conference (CAS) - Metal-Insulator Transition in Monolayer M<inf>o</inf>S<inf>2</inf> for Tunable and Reconfigurable Devices
摘要: In this paper, we show the electromagnetic design of a small patch antenna based on a molybdenum disulphide (MoS2) monolayer, with an area of only 22mm2, that exhibits high radiation efficiency and large tunability in microwaves at 10GHz thanks to a metal-insulator transition (MIT) induced by electrostatic gating. Furthermore, the MIT in MoS2 is used to reconfigure a tunable carbon nanotube-based filter, conferring it different functionalities: low-pass, high-pass and band-pass around 2GHz, while its carbon nanotube varactors allow tuning the cutoff frequency or central frequency.
关键词: tunable filters,carbon nanotubes,Microstrip antennas,molybdenum compounds
更新于2025-09-23 15:22:29
-
Catalytic synthesis of SiC nanowires in an open system
摘要: SiC nanowires (NWs) are usually synthesized in a closed vacuum reaction system which limits the yield of SiC NWs. In this work, SiC NWs and carbon nanotubes were synthesized in an open tube furnace at 1550 ℃ with Si powder as silicon sources, ethanol as carbon sources and ferrocene as catalyst. The as-synthesized products were ultralong β-SiC NWs with the diameter about 80-100 nm and the length up to several tens micrometers. The diameter of the carbon nanotubes was about 20-30 nm. The carbon nanotube yarns about 20 cm in length were obtained at the end of the tube furnace. The growth mechanism of SiC NWs and carbon nanotubes were proposed. Compared with the traditional synthetic techniques in the high vacuum closed system, the novel synthesis method in the open system provided a new approach to the synthesis of SiC NWs.
关键词: Carbon nanotubes,SiC nanowires,Open reaction system,Growth mechanism
更新于2025-09-23 15:22:29
-
Highly Hydrophobic Conducting Nanocomposites Based on a Fluoropolymer with Carbon Nanotubes
摘要: A procedure was suggested for preparing highly hydrophobic conducting coatings based on fluoropolymers with carbon nanotubes of two types: Taunit-MD and carbon nanotubes functionalized with alkyl groups. The surface resistance, contact angle, sliding angle, and surface roughness were measured; structural features of the nanocomposites were studied. The properties of the coatings obtained depend on the concentration and type of the carbon nanotubes used. Introduction of functionalized carbon nanotubes into a fluoropolymer matrix allows preparation of coatings with higher values of the sliding angle and electrical resistance. The contact angle and sliding angle depend on the surface roughness and structure in different fashions.
关键词: carbon nanotubes,electrical conductivity,surface roughness,hydrophobicity,nanocomposites
更新于2025-09-23 15:22:29