- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
ALD of ZnO:Ti: Growth Mechanism and Application as an Efficient Transparent Conductive Oxide in Silicon Nanowire Solar Cells
摘要: In the quest for replacement of indium-tin-oxide (ITO), Ti-doped zinc oxide (TZO) films have been synthesized by atomic layer deposition (ALD) and applied as n-type transparent conductive oxide (TCO). TZO thin films were obtained from titanium (IV) i-propoxide (TTIP), diethyl zinc and water, by introducing TiO2 growth cycle in a ZnO matrix. Process parameters such as the order of precursor introduction, the cycle ratio and the film thickness were optimized. The as-deposited films were analyzed for their surface morphology, elemental stoichiometry, optoelectronic properties and crystallinity, using a variety of characterization techniques. The growth mechanism was investigated for the first time by in situ quartz-crystal microbalance measurements. It evidenced different insertion modes of titanium depending on the precursor introduction, as well as the etching of Zn-Et surface groups by TTIP. Resistivity as low as 1.2 × 10-3 Ω cm and transmittance > 80% in the visible range were obtained for 72-nm thick films. Finally, the first application of ALD-TZO as TCO was reported. TZO films were successfully implemented as top electrodes in silicon nanowire solar cells. The unique properties of TZO combined with conformal coverage realized by ALD technique make it possible for the cell to show almost flat EQE response, surpassing the bell-like EQE curve seen in devices with sputtered ITO top electrode.
关键词: TCO,silicon nanowire solar cells,n-type,ZnO:Ti,Atomic Layer Deposition,QCM studies
更新于2025-09-23 15:19:57
-
Data on lateral collection length of charge carriers depending on pre-white-light soaking process for metal mesh transparent electrode based Cu(In,Ga)Se2 solar cells
摘要: The authors have recently reported silver nanowire based Cu(In,Ga)Se2 solar cells [1,2]. Metal mesh based transparent electrodes other than the silver nanowire can be also employed or have a potential to provide a better performance for the solar cells. To select a suitable electrode for a solar cell among metal meshes, it is required to have data on the lateral collection length of charge carriers in the targeted cell. The method to determine the lateral collection has been reported in our previous publication [3]. Here, we report data on the effect of the light intensity during pre-white-light soaking on the lateral charge collection length for metal mesh transparent electrode based Cu(In,Ga)Se2 solar cells.
关键词: Transparent electrodes,Lateral collection length,CIGS,Metal mesh,Silver nanowire,Solar cells
更新于2025-09-12 10:27:22
-
Radiation Tolerant Nanowire Array Solar Cells
摘要: Space power systems require photovoltaics that are lightweight, efficient, reliable, and capable of operating for years or decades in space environment. Current solar panels use planar multijunction, III-V based solar cells with very high efficiency, but their specific power (power to weight ratio) is limited by the added mass of radiation shielding (e.g. coverglass) required to protect the cells from the high-energy particle radiation that occurs in space. Here we demonstrate that III-V nanowire-array solar cells have dramatically superior radiation performance relative to planar solar cell designs and show this for multiple cell geometries and materials, including GaAs and InP. Nanowire cells exhibit damage thresholds ranging from ~10-40 times higher than planar control solar cells when subjected to irradiation by 100-350 keV protons and 1 MeV electrons. Using Monte Carlo simulations, we show that this improvement is due in part to a reduction in the displacement density within the wires arising from their nanoscale dimensions. Radiation tolerance, combined with the efficient optical absorption and the improving performance of nanowire photovoltaics, indicates that nanowire arrays could provide a pathway to realize high-specific-power, substrate-free, III-V space solar cells with substantially reduced shielding requirements. More broadly, the exceptional reduction in radiation damage suggests that nanowire architectures may be useful in improving the radiation tolerance of other electronic and optoelectronic devices.
关键词: space environment,irradiation-induced defects,radiation hard,space solar cells,Monte Carlo simulations,nanowire solar cells,high specific power
更新于2025-09-11 14:15:04