- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Dual‐Responsive Janus Membrane by One‐Step Laser Drilling for Underwater Bubble Selective Capture and Repelling
摘要: Aryl hydrocarbon receptor (AHR) signaling has been suggested to play roles in various physiological functions independent of its xenobiotic activity, including cell cycle regulation, immune response, and embryonic development. Several endogenous ligands were also identified by high-throughput screening techniques. However, the mechanism by which these molecules mediate AHR signaling in certain functions is still elusive. In this study, we investigated the possible pathway through which AHR and its endogenous ligands regulate neural development. We first identified two neuroactive steroids, 3α,5α-tetrahydrocorticosterone and 3α,5β-tetrahydrocorticosterone (5α- and 5β-THB), as novel AHR endogenous ligands through the use of an ultrasensitive dioxin-like compound bioassay and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS). We then treated zebrafish embryos with 5α- and 5β-THB, which enhance the expression of neurogenesis marker HuC. Furthermore, 5α- and 5β-THB both enhanced the expression of myelinating glial cell markers, sex determining region Y-box 10 (Sox10), and myelin-associated proteins myelin basic protein (Mbp) and improved the mobility of zebrafish larvae via the Ahr2 pathway. These results indicated that AHR mediates zebrafish neurogenesis and gliogenesis, especially the differentiation of oligodendrocyte or Schwann cells. Additionally, we showed that these molecules may induce neuroblastoma (NB) cell differentiation suggesting therapeutic potential of 5α- and 5β-THB in NB treatment. In summary, our results reveal that 5α- and 5β-THB are endogenous ligands of AHR and have therapeutic potential for NB treatment. By the interaction with THB, AHR signaling regulates various aspects of neural development.
关键词: Aryl Hydrocarbon Receptor (AHR),3α,5α-Tetrahydrocorticosterone,3α,5β-Tetrahydrocorticosterone,Myelination,Neural development,Neuroblastoma
更新于2025-09-19 17:13:59
-
Unveiling Ga(III) phthalocyanine-a different photosensitizer in neuroblastoma cellular model
摘要: Phthalocyanines (Pc) and their metallated derivatives are strongly considered for photodynamic therapy (PDT) possessing unique properties as possible new photosensitizers (PS). We have used toxicological assessments, real‐time monitoring of cellular impedance, and imagistic measurements for assessing the in vitro dark toxicity and PDT efficacy of Ga(III)‐Pc in SHSy5Y neuroblastoma cells. We have established the non‐toxic concentration range of Ga(III)‐Pc, a compound which shows a high intracellular accumulation, with perinuclear distribution in confocal microscopy. By choosing Ga(III)Pc non‐toxic dose, we performed in vitro experimental PDT hampering cellular proliferation. Our proposed Ga(III)‐Pc could complete a future PS panel for neuroblastoma alternate therapy.
关键词: toxicity,gallium(III),photosensitizer,proliferation,tumour,photodynamic therapy,neuroblastoma,viability
更新于2025-09-10 09:29:36