- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- 2018
- 2017
- 2016
- Optical pattern
- Phase diagram
- Surfactants
- Optical properties
- TB-MBJ
- FP-LAPW
- Electronic structure
- GGA
- DFT
- Infrared Radiation
- Optoelectronic Information Science and Engineering
- Chemistry
- Materials Science and Engineering
- University of Texas at Arlington
- Macquarie University
- Universiti Malaysia Terengganu
- Devi Ahilya University
- National Institute of Information and Communications Technologies (NICT)
- Povolzhskiy State University of Telecommunications and Informatics (PSUTI)
- University of Sa?da Dr Tahar Moulay
- University of Djillali Liabes
- Assumption University
- National Institute of Advanced Industrial Science and Technology
-
Up-Converting Lanthanide Fluoride Core@Shell Nanorods for Luminescent Thermometry in the First and Second Biological Windows - β-NaYF4: Yb3+, Er3+@SiO2 Temperature Sensor
摘要: Up-converting core@shell type β-NaYF4:Yb3+-Er3+@SiO2 nanorods have been obtained by a two-step synthesis process, which encompasses hydrothermal and microemulsion routes. The synthesized nanomaterial forms stable aqueous colloids and exhibits a bright dual-center emission (λex= 975 nm), i.e. up-conversion luminescence of Er3+ and down-shifting emission of Yb3+, located in the first (I-BW) and the second (II-BW) biological windows of the spectral range. The intensity ratios of the emission bands of Er3+ and Yb3+ observed in the Vis-NIR range monotonously change with temperature, i.e. the thermalized Er3+ levels (2H11/2→4I15/2/4S3/2→4I15/2) and the non-thermally coupled Yb3+/Er3+ levels (2F5/2→2F7/2/4I9/2→4I15/2 or 4F9/2→4I15/2). Hence, their thermal evolutions have been correlated with temperature using the Boltzmann type distribution and 2-th order polynomial fits for temperature sensing purposes, i.e. Er3+ 525/545 nm (max Sr = 1.31 %K-1) and Yb3+/Er3+ 1010/810 nm (1.64 %K-1) or 1010/660 nm (0.96 %K-1). Additionally, a fresh chicken breast was used as a tissue imitation in the performed ex vivo experiment, showing the advantage of the use of NIR Yb3+/Er3+ bands, vs. the typically used Er3+ 525/545 nm band ratio, i.e. better penetration of the luminescence signal through the tissue in the I-BW and II-BW. Such nanomaterials can be utilized as accurate and effective, broad-range Vis-NIR optical, contactless sensors of temperature.
关键词: Up-conversion luminescence,Luminescence intensity ratio (LIR),Functional nanomaterials,Rare earth ions,Energy transfer,Optical thermometer
更新于2025-11-25 10:30:42
-
<i>In vivo</i> detection of endotracheal tube biofilms in intubated critical care patients using catheter-based optical coherence tomography
摘要: The formation of biofilms in the endotracheal tubes (ETTs) of intubated patients on mechanical ventilation is associated with a greater risk of ventilator-associated pneumonia (VAP) and death. New technologies are needed to detect and monitor ETTs in vivo for the presence of these biofilms. Longitudinal OCT imaging was performed in mechanically ventilated subjects at 24 hr intervals until extubation to detect the formation and temporal changes of in vivo ETT biofilms. OCT-derived attenuation coefficient images were used to differentiate between mucus and biofilm. Extubated ETTs were examined with optical and electron microscopy, and all imaging results were correlated with standard-of-care clinical test reports. OCT and attenuation coefficient images from 4 subjects were positive for ETT biofilms and were negative for 2 subjects. The processed and stained extubated ETTs and clinical reports confirmed the presence/absence of biofilms in all subjects. Our findings confirm that OCT can detect and differentiate between biofilm-positive and biofilm-negative groups (p < 10-5). OCT image-based features may serve as biomarkers for direct in vivo detection of ETT biofilms and help drive investigation of new management strategies to reduce the incidence of VAP.
关键词: attenuation coefficient image,endotracheal tube,biofilm,optical coherence tomography,ventilator-associated pneumonia
更新于2025-11-21 11:24:58
-
Manipulation and Deposition of Complex, Functional Block Copolymer Nanostructures using Optical Tweezers
摘要: Block copolymer self-assembly has enabled the creation of a range of solution-phase nanostructures with applications from optoelectronics and biomedicine to catalysis. However, to incorporate such materials into devices a method that facilitates their precise manipulation and deposition is desirable. Herein we describe how optical tweezers can be used to trap, manipulate, and pattern individual cylindrical micelles and larger hybrid micellar materials. Through the combination of TIRF imaging and optical trapping we can precisely control the three-dimensional motion of individual cylindrical block copolymer micelles in solution, enabling the creation of customizable arrays. We also demonstrate that dynamic holographic assembly enables the creation of ordered customizable arrays of complex hybrid block copolymer structures. By creating a program which automatically identifies, traps and then deposits multiple assemblies simultaneously we have been able to dramatically speed up this normally slow process, enabling the fabrication of arrays of hybrid structures containing hundreds of assemblies in minutes rather than hours.
关键词: optical trapping,directed assembly,block copolymers,self-assembly,nanofibers
更新于2025-11-21 11:24:58
-
Probing the light hole / heavy hole switching with correlated magneto-optical spectroscopy and chemical analysis on a single quantum dot
摘要: A whole series of complementary studies have been performed on the same, single nanowire containing a quantum dot: cathodoluminescence spectroscopy and imaging, micro-photoluminescence spectroscopy under magnetic field and as a function of temperature, and energy-dispersive X-ray spectrometry and imaging. The ZnTe nanowire was deposited on a Si3N4 membrane with Ti/Al patterns. The complete set of data shows that the CdTe quantum dot features the heavy-hole state as a ground state, although the compressive mismatch strain promotes a light-hole ground state as soon as the aspect ratio is larger than unity (elongated dot). A numerical calculation of the whole structure shows that the transition from the heavy-hole to the light-hole configuration is pushed toward values of the aspect ratio much larger than unity by the presence of a (Zn,Mg)Te shell, and that the effect is further enhanced by a small valence band offset between the semiconductors in the dot and around it.
关键词: molecular beam epitaxy,optical spectroscopy,EDX,semiconductors,cathodoluminescence,quantum dot,nanowires
更新于2025-11-21 11:20:48
-
Structural and optical studies on PVA capped SnS films grown by chemical bath deposition for solar cell application
摘要: Tin monosulphide (SnS) thin films capped by PVA have been successfully deposited on glass substrates for cost effective photovoltaic device applications by a simple and low-cost wet chemical process, chemical bath deposition (CBD) at different bath temperatures varying in the range, 50–80 °C. X–ray diffraction analysis showed that the deposited films were polycrystalline in nature, showing orthorhombic structure with an intense peak corresponding to (040) plane of SnS. These observations were further confirmed by Raman analysis. FTIR spectra showed the absorption bands which corresponds to PVA in addition to SnS. The scanning electron microscopy and atomic force microscopy studies revealed that the deposited SnS films were uniform and nanostructured with an average particle size of 4.9 to 7.6 nm. The optical investigations showed that the layers were highly absorbing with the optical absorption coefficient ~105 cm–1. A decrease in optical band gap from 1.92 to 1.55 eV with an increase of bath temperature was observed. The observed band gap values were higher than the bulk value of 1.3 eV, which might be due to quantum confinement effect. The optical band gap values were also used to calculate particle size and the results are discussed.
关键词: structural properties,optical properties,SnS thin films,polyvinyl alcohol,capping agent,chemical bath deposition
更新于2025-11-21 11:18:25
-
High Power Laser‐Driven Ce <sup>3+</sup> ‐Doped Yttrium Aluminum Garnet Phosphor Incorporated Sapphire Disc for Outstanding White Light Conversion Efficiency
摘要: A facile synthesis method for the development of Y3 (cid:2) xAl5O12:xCe3t (0.03–0.24) yellow phosphor via an auto-combustion method and fabrication of phosphor-incorporated sapphire disc (PISD) of various dimensions is reported. The photoluminescence (PL) intensity for the optimized concentration of Ce3t-doped yttrium aluminum garnet (YAG) phosphor is recorded at 550 nm wavelength under the excitation wavelength of 445 nm from a high power blue laser diode. The developed PISD exhibits high stability and luminescence. The blue laser diode is a promising candidate to revolutionize the luminous intensity of the white light by several orders of magnitude as compared with the existing blue light-emitting diodes. This emerging technology has an extremely bright future with endless uses of tunable power of the laser that controls the intensity of the emitted white light. Hence, this new approach provides a paradigm shift to produce highly ef?cient white light based on PISD integrated with blue laser diode as compared with the conventional technology. Moreover, such con?gurations allow more styling and packaging ?exibility that reduces the overall size of the fabricated unit and makes it favorable for various lighting applications.
关键词: blue laser diodes,photoluminescence,optical geometry,white light conversion,yellow phosphor
更新于2025-11-21 11:18:25
-
Luminescence and anion recognition performance of mononuclear Eu(III) complexes with N- and O- donor pyridine derivatives
摘要: A series of Eu(III) complexes with pyridine-2-carboxamide (PCA), pyridine-2-carboxaldoxime (PCAO), pyridine-2,3-dicarboxylic anhydride (PDCA) or pyridine-2-methanol (PM) as primary ligands and 4,4′-dimethoxy-2,2′-bipyridine (DMBP) as ancillary ligand were synthesized. The interaction between the ligands and complexes were confirmed by FT-IR study. The complexes were abbreviated as [Eu(PCA)3DMBP].Cl3 (C1), [Eu(PCAO)3DMBP].Cl3 (C2), [Eu(PDCA)3DMBP].Cl3 (C3) and [Eu(PM)3DMBP].Cl3 (C4). Optical studies were done by UV–vis spectroscopy and PL spectroscopy. The highest intrinsic luminescent quantum yield (53.42%) and lifetime value (1456 μs) were found for C3. Lowest quantum yield was exhibited by C2. Anion sensing studies of all the complexes were done by UV–vis and PL spectroscopy and it was observed that complex C1 showed remarkable change in optical properties upon addition of F? and HSO4? ions. Thus C1 can be used as optical sensor for F? and HSO4? ions. The FQD for F? and HSO4? ions were found to be 6.55 and 3.58 respectively for C1.
关键词: Sensing performance,Antenna effect,Hydrogen bonding,Optical sensor,Lifetime decay
更新于2025-11-21 11:18:25
-
Mono and co-substitution of Sr2+ and Ca2+ on the structural, electrical and optical properties of barium titanate ceramics
摘要: In this work, Ba0.9Sr0.1TiO3, Ba0.7Sr0.3TiO3, Ba0.5Sr0.5TiO3, Ba0.5Ca0.25Sr0.25TiO3 and Ba0.5Ca0.5TiO3 have been synthesized to evaluate the influence of mono and co-substitution of A-site dopants (Sr2+ and Ca2+) on the structural, electrical and optical properties of BaTiO3 ceramics. Sr2+ added samples showed a tetragonal structure which became slightly distorted with increasing Sr2+ concentration and finally achieved a cubic structure for x = 0.50. Ba0.5Ca0.5TiO3 also retained their tetragonality with limited solubility. Presence of second phase, CaTiO3 demonstrated the fact of restricted solubility. The concurrent effect of Sr2+ and Ca2+ didn't alter the tetragonal structure. Sr2+ substitution enhanced the apparent density as well as grain size which stimulated the domain wall motion and improved dielectric properties. However, the ferroelectric nature of Ba1-xSrxTiO3 was poor due to the redistribution of point defect at grain boundary. The optical band gap was found to be reduced from 3.48 eV to 3.28 eV with increasing Sr2+ content. Co-substitution of cations improved the electrical property significantly. The highest value of dielectric constant was found to be ~547 for Ba0.5Ca0.25Sr0.25TiO3 ceramics. Both Ba0.5Ca0.25Sr0.25TiO3 and Ba0.5Ca0.5TiO3 had developed P-E loop having lower coercive field and moderate optical band gap energy. Co-doping with Sr2+ and Ca2+ was a good approach enhancing materials electrical as well as optical property.
关键词: Dielectric properties,Grain size,X-ray diffraction,Optical properties,Sintering
更新于2025-11-21 11:18:25
-
Synthesis of Nanocrystalline SnxCd1?xS Thin Films Capped with Thioglycerol and Methanol (TGM) and Study of Optical and Structural Properties
摘要: Nanostructured CdS (nCdS) and ternary SnxCd1?xS thin films capped with thioglycerol and methanol in 1:1 ratio in aqueous medium were prepared using hydrated stannous chloride (SnCl2·2H2O), anhydrous cadmium acetate (CH3COO)Cd·2H2O and thiourea (CS(NH2)2) as sources of Sn, Cd and S ions, respectively. Thickness of the film drastically decreases for low concentrations (0–2%) of Sn doping, then increases for (2–3%) and 5% Sn doping. Effects of Sn concentration variation on the optical properties, photoluminescence and structural properties of the nanoparticles were studied. The optical transmittance measurement using ultraviolet–visible–near infrared spectroscopy showed more than 80% transparency in the wavelength range 450–800 nm for 3% and 5% Sn doping. The direct optical band gap value of nanoCdS thin films was obtained as 2.91 eV, which decreased with Sn doping for its varying concentrations. Photoconductivity gain was negligible. A decrease in intensity of lower wavelength emission at 430 nm in nCdS was observed to have (2–5)% Sn content. X-ray diffraction patterns and selected area electron diffraction patterns confirmed formation of the nanocrystalline hexagonal CdSnS phase. Scanning electron microscope and transmission electron microscope measurements of the CdSnS thin films show that the particle size lies well under 20 nm.
关键词: SEM,TEM,photoluminescence,Optical study,XRD
更新于2025-11-21 11:18:25
-
Effect of rare earth Pr doping on core characteristics of electrodeposited nanocrystalline Cu2O films: a film for optoelectronic technology
摘要: Undoped and Pr doped Cu2O nanocrystalline ?lms were fabricated by the electrodeposition method. These ?lms were studied to investigate the formation, morphology, optical, and photoresponse properties on Pr doping concentrations (i.e., 0, 1, 3, and 5 wt%). Structural studies of the deposited Cu2O:Pr ?lms exposed the cubic crystal structure with polycrystalline nature. The crystallite size is decreased from 54 to 29 nm by increasing the Pr doping concentrations. The Raman peaks at 110, 147, 215, 413, and 633 con?rm the Cu2O phase and well matched with the XRD results. The morphological study shows that the pyramid-shaped particles are homogeneously arranged on the ?lm surfaces. The absorption is high for the ?lm deposited with the 5% Pr doping is due to the maximum thickness than the other ?lms. The calculated band gap values of Cu2O:Pr ?lms were reduced from 2.06 to 1.90 eV with raising the Pr doping level. PL spectra showed high intense emission peak at 617 nm which con?rms the NBE emission of Cu2O lattice. Index of refraction (n) and coef?cient of extinction (k) values were increased on increasing the doping concentration from 0 to 5%. From photosensitivity analysis, there is an increase of photoresponse behavior with respect to illuminated current.
关键词: Electrodeposition,Structural,Optical and electrical properties,Morphological
更新于2025-11-21 11:18:25