- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Graphene Heterostructure Integrated Optical Fiber Bragg Grating for Light Motion Tracking and Ultrabroadband Photodetection from 400 nm to 10.768 μm
摘要: Integrated photonics and optoelectronics devices based on graphene and related 2D materials are at the core of the future industrial revolution, facilitating compact and flexible nanophotonic devices. Tracking and detecting the motion of broadband light in millimeter to nanometer scale is an unfold science which has not been fully explored. In this work, tracking and detecting the motion of light (millimeter precision) is first demonstrated by integrating graphene with an optical fiber Bragg grating device (graphene-FBG). When the incident light moves toward and away from the graphene-FBG device, the Bragg wavelength red-shifts and blue-shifts, indicating its light motion tracking ability. Such light tracking capability can be further extended to an ultrabroad wavelength range as all-optical photodetectors show the robust response from 400 nm to 10.768 μm with a linear optical response. Interestingly, it is found that graphene-Bi2Te3 heterostructure on FBG shows 87% higher photoresponse than graphene-FBG at both visible and telecom wavelengths, due to stronger phonon-electron coupling and photo-thermal conversion in the heterostructure. The device also shows superior stability even after 100 d. This work may open up amazing integrated nanophotonics applications such as astrophysics, optical communication, optical computing, optical logic gating, spectroscopy, and laser biology.
关键词: 2D materials,graphene,ultrabroadband photodetection,heterostructures,optical fiber Bragg grating,light motion tracking
更新于2025-11-28 14:24:03
-
1.5?μm spectral band laser power modulation multilayer graphene refractive index
摘要: Multilayer graphene refractive index (RI) modulation over laser power between 0.6 and 14.3 mW at 1500 nm to 1620 nm wavelength band is performed based on a half graphene cladding fiber Bragg grating (FBG), coming from an FBG, which half is cladding etched and coated with graphene, and another half of the FBG is remained. By measuring the wavelength difference between these two parts of the FBG, the temperature cross sensitivity can be removed. With the in-fiber laser power increase, RI of the multilayer graphene exhibits linearly increasing modulation process. The RI modulation can be deduced by the modulation efficiency of Bragg wavelength shift versus power. The modulation efficiency of different wavelength laser is slightly different, which is mainly due to the different interaction area between light field and coating graphene. The maximum modulation efficiency can get 59.3 pm/mW corresponding to 0.0545RIU (refractive index unit)/W RI modulation efficiency and 7.446 × 10?4 RI increment of the multilayer graphene.
关键词: Laser modulation,Refractive index,Graphene,Optical fiber Bragg grating
更新于2025-09-12 10:27:22