- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Effect of hydrogen peroxide on photoelectric properties of high-transmittance FTO films prepared by spray pyrolysis
摘要: The FTO film prepared by spray pyrolysis has low efficiency and most of the precursors are discharged in the form of waste steam. According to the high oxidation property of H2O2, it is attempted to improve the film formation rate by changing the concentration of H2O2. Fluorine-doped SnO2 (FTO) thin films with high transmittance were prepared by spray pyrolysis using monobutyltin trichloride as the tin source and ammonium fluoride as the fluorine source. Different concentrations of hydrogen peroxide (0-0.08M) are added to the precursor solution. In this paper, we studied the effect of hydrogen peroxide on the structure, surface morphology and photoelectric properties of FTO thin films. The results show that the growth rate of the FTO films increased from 6.04 nm/s to 8.36 nm/s with the increase of H2O2 concentration from 0 to 0.08 M. The optimum preparation process is H2O2 concentration controlled at 0.04M, and FTO thin films suitable for solar cells are prepared. It has excellent performance parameters; carrier concentration:2.74*1021cm-3; carrier mobility:55.92 cm2 V-1s-1; photoelectric quality factor:2.66×10-3·Ω-1and the average transmittance of visible light: 79.87%. At the same time, increasing H2O2 concentration leads to narrowing of optical band gap. Adding appropriate hydrogen peroxide concentration can improve the film production rate and obtain excellent quality films.
关键词: Tin oxide,Preferred orientation,Hydrogen Peroxide,Optoelectronic performance
更新于2025-09-23 15:22:29
-
Improving the performance of Cu2ZnSnS4 thin film solar cell by engineering the ITO film thickness
摘要: In this work, the effects of tin doped indium oxide (ITO) thin films with different thicknesses (50 nm–476 nm) on the optoelectronic performance were investigated. Meanwhile, the sputtered ITO layers were annealed at 180°C for 60min under air atmosphere. The result indicated that the electro-optical properties of ITO films with the thickness (383 nm) were optimum, and the corresponding resistivity and average reflectance in the spectrum range (350–860 nm) were 4.73 × 10?4 Ω cm and lower than 20%, respectively. Finally, impacts of ITO layers with various thicknesses on the performance of CZTS solar cells were also studied. The open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF) and power conversion efficiency (PCE) of CZTS solar cells had been increased significantly from 576 mV to 636 mV, from 15.8 mA/cm2 to 20.2 mA/cm2, from 31.2% to 43.4% and from 3.04% to 5.56%, respectively, and eventually the highest PCE of CZTS solar cell based on 383 nm ITO window layer thickness was 5.56%.
关键词: Power conversion efficiency,ITO films,Reflectance,Optoelectronic performance
更新于2025-09-23 15:21:01
-
Design of high-performance double quantum well vertical cavity transistor lasers with GRIN base region
摘要: Different confinement structures are analyzed to achieve higher optoelectronic performances for double quantum well vertical cavity transistor laser with graded index separate confinement heterostructure. Adding the drift component to the diffusion term of the current density and solving new sets of equations, modified electro-optic performances of the device is obtained. Band-gap engineering of the original structure predicts simultaneous improvements in both current gain (more than two times) and ?3 dB optical bandwidth (by 1.5 GHz). Other less critical, yet important, performance metrics including optical output power and threshold current (up to 20%) are enhanced due to applying graded layers of AlξGa1-ξAs in the base region.
关键词: Vertical cavity transistor laser,GRIN base region,Optoelectronic performance,Double quantum well,Band-gap engineering
更新于2025-09-19 17:13:59
-
Nucleation-controlled growth of superior long oriented CsPbBr <sub/>3</sub> microrod single crystals for high detectivity photodetectors
摘要: There has been great interest in the use of cesium lead bromide (CsPbBr3), which is one of the most important members of the all-inorganic perovskite family, due to its superior optoelectronic performance and higher stability. Recently, it has been demonstrated that it is advantageous to use CsPbBr3 microrods and nanowires in photodetectors because of their higher crystallinity, low amount of defects, and easy control of carrier transport along a specific direction as compared to their counterparts of single crystals and thin films. However, there is a shortage of adequate investigations that describe how to control the growth of CsPbBr3 microrods and nanowires so that they retain the optoelectronic performance of single CsPbBr3 microrods. Therefore, we are reporting how to control the growth of orientated dispersive super-long CsPbBr3 microrod single crystals (CsPbBr3 MSCs) via a simple anti-solvent method. The crucial factor in controlling the growth of dispersive super-long CsPbBr3 MSCs is the regulation of the rapid nucleation rate and slowing of the growth rate via controlling the di?usion velocity of anti-solvent methanol. We also reveal the growth mechanism of CsPbBr3 MSCs as layer-by-layer growth that originates from the 2D nucleus. The CsPbBr3 MSCs are revealed grew in the direction of [010], with the (101) facet exposed. Moreover, photodetectors based on one CsPbBr3 MSC were fabricated, and the detectivity (D) and the on/o? ratio were as high as 3.67 (cid:2) 1012 Jones and 988, respectively, suggesting a very strong optoelectronic response as photodetectors. The mechanism that the Cs ions and Cs vacancies use to move to negative and positive electrodes along the channels constructed by [PbBr6]4(cid:3) in the [010] direction of the CsPbBr3 MSC (101) facet was revealed, after activation by the applied electrical field, which is beneficial to enhance the optoelectronic response but does not reduce the device stability.
关键词: anti-solvent method,optoelectronic performance,microrod single crystals,photodetectors,CsPbBr3
更新于2025-09-16 10:30:52