修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

35 条数据
?? 中文(中国)
  • Chlorogenic Acid Supplementation Improves Multifocal Electroretinography in Patients with Retinitis Pigmentosa

    摘要: To evaluate the effect of chlorogenic acid supplementation in patients with retinitis pigmentosa, we evaluated objective change in visual function with multifocal electroretinography, along with visual acuity, visual field, standard electroretinography, and contrast sensitivity. Eighteen patients diagnosed with retinitis pigmentosa were enrolled in this prospective, non-comparative, single-arm study. Multifocal electroretinography, best-corrected visual acuity in Early Treatment Diabetic Retinopathy Study letters, total point score on visual field examination with Humphrey Field Analyzer II, electroretinography, and contrast sensitivity were measured and repeated after 3 months supplementation with chlorogenic acid. The amplitude of ring 5 was significantly higher on multifocal electroretinography after 3 months of chlorogenic acid supplementation (7.2 ± 9.5 vs 8.3 ± 10.8 nV/deg2, mean ± standard deviation, P = 0.022). There were no significant changes in the best-corrected visual acuity, total point score on Humphrey Field Analyzer, 30 Hz flicker amplitude on standard electroretinography, or contrast sensitivity. Chlorogenic acid may have a beneficial effect on the peripheral area at the margins of retinal degeneration, and should be considered as an anti-oxidant for the management of retinitis pigmentosa.

    关键词: Retinitis Pigmentosa,Oxidative Stress,Chlorogenic Acid,Retinal Degeneration,Antioxidants

    更新于2025-09-23 15:22:29

  • Taurine protects against NMDA-induced retinal damage by reducing retinal oxidative stress

    摘要: This study aimed to evaluate effect of TAU on NMDA-induced changes in retinal redox status, retinal cell apoptosis and retinal morphology in Sprague–Dawley rats. Taurine was injected intravitreally as pre-, co- or post-treatment with NMDA and 7 days post-treatment retinae were processed for estimation of oxidative stress, retinal morphology using H&E staining and retinal cell apoptosis using TUNEL staining. Treatment with TAU, particularly pre-treatment, significantly increased retinal glutathione, superoxide dismutase and catalase levels compared to NMDA-treated rats; whereas, the levels of malondialdehyde reduced significantly. Reduction in retinal oxidative stress in TAU pre-treated group was associated with significantly greater fractional thickness of ganglion cell layer within inner retina and retinal cell density in inner retina. TUNEL staining showed significantly reduced apoptotic cell count in TAU pre-treated group compared to NMDA group. It could be concluded that TAU protects against NMDA-induced retinal injury in rats by reducing retinal oxidative stress.

    关键词: Retina,Oxidative stress,Taurine,NMDA

    更新于2025-09-23 15:22:29

  • Oral ascorbic acid 2-glucoside prevents coordination disorder induced via laser-induced shock waves in rat brain

    摘要: Oxidative stress is considered to be involved in the pathogenesis of primary blast-related traumatic brain injury (bTBI). We evaluated the effects of ascorbic acid 2-glucoside (AA2G), a well-known antioxidant, to control oxidative stress in rat brain exposed to laser-induced shock waves (LISWs). The design consisted of a controlled animal study using male 10-week-old Sprague-Dawley rats. The study was conducted at the University research laboratory. Low-impulse (54 Pa?s) LISWs were transcranially applied to rat brain. Rats were randomized to control group (anesthesia and head shaving, n = 10), LISW group (anesthesia, head shaving and LISW application, n = 10) or LISW + post AA2G group (AA2G administration after LISW application, n = 10) in the first study. In another study, rats were randomized to control group (n = 10), LISW group (n = 10) or LISW + pre and post AA2G group (AA2G administration before and after LISW application, n = 10). The measured outcomes were as follows: (i) motor function assessed by accelerating rotarod test; (ii) levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), an oxidative stress marker; (iii) ascorbic acid in each group of rats. Ascorbic acid levels were significantly decreased and 8-OHdG levels were significantly increased in the cerebellum of the LISW group. Motor coordination disorder was also observed in the group. Prophylactic AA2G administration significantly increased the ascorbic acid levels, reduced oxidative stress and mitigated the motor dysfunction. In contrast, the effects of therapeutic AA2G administration alone were limited. The results suggest that the prophylactic administration of ascorbic acid can reduce shock wave-related oxidative stress and prevented motor dysfunction in rats.

    关键词: ascorbic acid 2-glucoside,laser-induced shock waves,traumatic brain injury,Oxidative stress,motor dysfunction

    更新于2025-09-23 15:21:01

  • Blue light-emitting diode irradiation promotes transcription factor EB-mediated lysosome biogenesis and lysosomal cell death in murine photoreceptor-derived cells

    摘要: Exposure to blue light from light-emitting diodes (LEDs) is a source of damage for human eyes in today’s modern life. Although it is well known that blue light can cause cellular damage and death, the molecular mechanism underlying this is still not fully understood. Here, we demonstrated that exposure to blue LED light increased lysosome levels and perinuclear cluster formation in 661W murine photoreceptor-derived cells. Irradiation with blue LED light promoted the nuclear transport of transcription factor EB (TFEB) and a subsequent increase in lysosomal-related gene expression. Moreover, blue LED light induced morphological changes in lysosomal structure and lysosomal membrane permeabilization (LMP). These effects were suppressed by an antioxidant, N-acetylcysteine (NAC). Finally, a calcium ion chelator, BAPTA-AM, attenuated blue LED light-induced lysosomal biogenesis and cell death. Taken together, these findings suggest that oxidative stress under blue LED light increases lysosome levels via the TFEB pathway in a calcium-dependent manner, resulting in the accumulation of damaged lysosomes and subsequently lysosomal cell death. Our results imply that lysosomal homeostasis plays a key role in the maintenance of eye function and the progression of retinal diseases.

    关键词: TFEB,Blue LED light,Calcium,Lysosome biogenesis,Oxidative stress,Lysosomal membrane permeabilization

    更新于2025-09-23 15:21:01

  • Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine

    摘要: Quantum dots (QDs) have caused large challenges in clinical tests and biomedical applications due to their potential toxicity from nanosize effects and heavy metal components. In this study, the physiological responses of Phanerochaete chrysosporium (P. chrysosporium) to CdSe/ZnS QDs with either an inorganic sulfide NaHS or an organic sulfide cysteine as antidote have been investigated. Scanning electron microscope analysis showed that the hyphal structure and morphology of P. chrysosporium have obviously changed after exposure to 100 nM of COOH CdSe/ZnS 505, NH2 CdSe/ZnS 505, NH2 CdSe/ZnS 565, or NH2 CdSe/ZnS 625. Fourier transform infrared spectroscopy analysis indicated that the existence of hydroxyl, amino, and carboxyl groups on cell surface could possibly conduct the stabilization of QDs in an aqueous medium. However, after NaHS or cysteine treatment, the cell viability of P. chrysosporium exposed to CdSe/ZnS QDs increased as compared to control group, since NaHS and cysteine have assisted P. chrysosporium to alleviate oxidative damage by regulating lipid peroxidation and superoxide production. Meanwhile, NaHS and cysteine have also stimulated P. chrysosporium to produce more antioxidant enzymes (superoxide dismutase and catalase), which played significant roles in the defense system. In addition, NaHS and cysteine were used by P. chrysosporium as sulfide sources to promote the glutathione biosynthesis to relieve CdSe/ZnS QDs-induced oxidative stress. This work revealed that sulfide sources (NaHS and cysteine) exerted a strong positive effect in P. chrysosporium against the toxicity induced by CdSe/ZnS QDs.

    关键词: Detoxification,Cysteine,CdSe/ZnS quantum dots,Sodium hydrosulfide,Antioxidant enzymes,Oxidative stress

    更新于2025-09-23 15:19:57

  • Bactericidal action of ferulic acid with ultraviolet-A light irradiation

    摘要: The bactericidal activity of ferulic acid (FA) against various microorganisms was remarkably enhanced by ultraviolet-A (UV-A) irradiation (wavelength, 365 nm). However, the bactericidal mechanism in the photo-combination system has not been evaluated. In the present study, this combined treatment was characterized by investigating associated changes in cellular functions of Escherichia coli, including assessments of respiratory activity, lipid peroxidation, membrane permeability, and damage to DNA and the cell surface. FA adsorbed onto and was incorporated into bacterial membranes, and the affinity resulted in decreased respiratory activity and enhanced lipid peroxidation in the cytoplasmic membrane with low-fluence (1.0 J/cm2) UV-A irradiation. Flow cytometry analysis revealed that additional exposure (8 J/cm2) combined with FA (1 mg/mL) induced increased cell permeability, yielding a 4.8-log decrease in the viable cell count. Morphologically, the treated cells exhibited a bacterial membrane dysfunction, producing many vesicles on the cell surface. However, despite this effect on the cell surface, plasmid DNA transformed into FA-treated E. coli maintained supercoiled integrity with negligible DNA oxidation. Our data strongly suggested that FA functions inside and outside the bacterial membrane; UV-A exposure in the presence of FA then causes increased oxidative modification and subsequent disruption of the bacterial membrane, without causing detectable genotoxicity.

    关键词: Ultraviolet-A,Bactericidal action,Ferulic acid,Oxidative stress,Membrane damage

    更新于2025-09-23 15:19:57

  • Selective Visualization of Live-Cell Mitochondrial Thiophenols and Their Induced Oxidative Stress Process by a Rationally Designed Rhodol-Based Fluorescent Probe

    摘要: Mitochondria as cellular powerhouses are the preferential targets affected by thiophenols, an important class of highly toxic environmental pollutants, and are linked to the production of pathogenic reactive oxygen species (ROS) induced by trace thiophenol residues. For real-time and accurate sensing, it is critically important to develop highly sensitive fluorescent probes for the specific detection of mitochondrial thiophenols. Herein, we report the first mitochondria-targeted fluorescent probe (ROAL) to image thiophenols in living cells. The development of ROAL was based on a novel red-emitting rhodol derivative (ROAP). ROAL proved to be highly selective to thiophenols among various analytes including aliphatic thiols, and renders an ultrasensitive off-on fluorescence response to thiophenols with a remarkable detection limit (8.1 nM). The probe efficiently stains mitochondria with a high Pearson’s co-localization coefficient (0.95) using Mito Tracker Green FM as reference, thereby ensuring the specific detection of mitochondrial thiophenols in living HepG2 and HeLa cells. In particular, using this probe we for the first time proved that endogenous reactive oxygen species have the capacity to eliminate thiophenols in living cells, suggesting that thiophenols might induce cellular oxidative stress.

    关键词: oxidative stress damage,fluorescent probe,live-cell imaging,thiophenol,mitochondria-targeted

    更新于2025-09-23 15:19:57

  • A phenylboronate-based SERS nanoprobe for detection and imaging of intracellular peroxynitrite

    摘要: A surface-enhanced Raman scattering (SERS) based nanoprobe was developed for detection and imaging of endogenous peroxynitrite in living cells. The probe was fabricated by assembling 3-mercaptophenylboronic acid pinacol ester onto the surface of gold nanoparticles (AuNPs). The detection of peroxynitrite is accomplished via measurement of the changes in the SERS spectra (at 882 cm?1) that are caused by the reaction between probe and peroxynitrite. The probe has a fast response (<30 s), a 0.4 μM lower detection limit and a wide linearity range from 5.0 × 10?7 to 1.0 × 10?4 M. It is biocompatible and highly stable on storage and under various pH conditions. Both the reaction and the SERS signal are highly specific over other species. The nanoprobe was successfully applied to SERS imaging of peroxynitrite that is produced in macrophages under oxidative stress. Conceivably, the method has a most viable tool for use in studies on peroxynitrite-related physiological and pathological processes.

    关键词: Surface-enhanced Raman scattering,Boronate ester,Specific reaction,Reactive oxygen species,Gold nanoparticles,Living cell,Oxidative stress,Biosensor

    更新于2025-09-23 15:19:57

  • Measurement of ROS in Caenorhabditis elegans Using a Reduced Form of Fluorescein

    摘要: Oxidative stress is implicated in the pathogenesis of various neurodegenerative diseases, including Alzheimer’s disease. Oxidative stress is a result of a disruption of the equilibrium between antioxidants and oxidants, in favor of oxidants. Since mitochondria are major sites of production and reduction of reactive oxygen species (ROS), measurement of ROS levels can help us determine if mitochondrial functional integrity has been compromised. In this protocol, we describe a method to measure the level of ROS in the nematode Caenorhabditis elegans, using chloromethyl-2,7’-dichlorodihydrofluorescein diacetate (CM-H2DCFDA).

    关键词: CM-H2DCFDA,C. elegans,Mitochondria,Oxidative stress,DCF,ROS

    更新于2025-09-19 17:15:36

  • The Effect of Fluence on Macrophage Kinetics, Oxidative Stress, and Wound Closure Using Real-Time <i>In Vivo</i> Imaging

    摘要: Objective: The aim of our study was to quantify the effect of doses delivered by a He:Ne laser on individual macrophage kinetics, tissue oxidative stress, and wound closure using real-time in vivo imaging. Background: Photobiomodulation has been reported to reduce tissue inflammation and accelerate wound closure; however, precise parameters of laser settings to optimize macrophage behavior have not been established. We hypothesized that quantitative and real-time in vivo imaging could identify optimal fluence for macrophage migration, reduction of reactive oxygen species, and acceleration of wound closure. Methods: Larval zebrafish Tg(mpeg-dendra2) were loaded with dihydroethidium for oxidative stress detection. Fish were caudal fin injured, treated with 635 nm continuous 5 mW He:Ne laser irradiation at 3, 9, or 18 J/cm2 and time-lapsed imaged within the first 120 min postinjury. Images taken 1 and 24-h postinjury were compared for percentage wound closure. Results: A fluence of 3 J/cm2 demonstrated significant increases in macrophage migration speed, fewer stops along the way, and greatest directed migration toward the wound. These findings were associated with a significant reduction in wound content reactive oxygen species when compared with control wounded fins. Both 3 and 9 J/cm2 significantly accelerated wound closure when compared with nonirradiated control fish. Conclusions: Wound macrophage activity could be manipulated by applied fluence, leading to reduced levels of wound reactive oxygen species and accelerated wound closure. The zebrafish model provides a means to quantitatively compare wound macrophage behavior in response to a variety of laser treatment parameters in real time.

    关键词: zebrafish,macrophage,He:Ne laser,oxidative stress,time-lapse imaging

    更新于2025-09-19 17:15:36