- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Defining the composition and electronic structure of large-scale and single-crystalline like Cs2AgBiBr6 films fabricated by capillary-assisted dip-coating method
摘要: Owning the merits of both lead-free and air-stable, the double-perovskite Cs2AgBiBr6 has attracted increasing attention, but suffers low visible-light absorption coefficient due to its large indirect bandgap. Moreover, the electronic structure of its synthesized films has not been explored clearly yet. In this work, we developed a general and promising method to fabricate continuous, uniform and highly orientated Cs2AgBiBr6 films in large scale on various substrates through capillary-assisted dip-coating method. Strikingly, those optimized films are single crystalline verified by 4-scan XRD. Its electronic structure was carefully studied independently by multi-photo-physical characterizations. Its bandgap can be tuned from 2.65 to 2.25 eV by changing the substrate temperature in growth from 40 to 160 °C. Essentially, their work-function (WF) was determined at ~5.01 eV and WF-VBM is around 2 eV. This novel band structure with typical n-type characteristic, was further confirmed by DFT calculations, which reveals that the Cs interstitials and Br vacancies derived deep defect levels were fixed around its Fermi level, closer to the conduction band. This conclusion is different from its widely accepted p-type feature, but definitely deepens our understanding of this material and inspires us to find more valuable strategies of modulating its band structure and optoelectronic properties.
关键词: Single-crystalline perovskite films
更新于2025-11-20 15:33:11
-
Artifacts in Transient Absorption Measurements of Perovskite Films Induced by Transient Reflection from Morphological Microstructures
摘要: Organolead halide perovskites MAPbX3 (MA = CH3NH3+; X = Cl?, Br?, I?) have attracted broad tremendous interest in the past 10 years for applications in solar cells and light-emitting devices. In evaluating the quality of the perovskite materials, spectroscopic characterizations such as static and time-resolved absorption and photoluminescence measurements are essential to examine their photophysical properties. A recent report found that the correct measurement of static absorption spectra of MAPbX3 films is indeed difficult due to the strong light scattering caused by their poor surface coverage or complex microstructures. These morphological complexities seem to be inevitable in thin-film fabrication and should not only affect the steady-state spectroscopic measurements but also can significantly impact the time-resolved spectroscopic characterizations, whose results are crucial for understanding photoinduced carrier dynamics in the examined materials. Photoexcited states in semiconductor materials induce changes in the real and imaginary parts of the dielectric function. This leads to changes in absorption (imaginary part) and reflectivity (real part), which can be substantial for materials with significant values of refractive index such as lead halide perovskites. Transient absorption (TA) spectroscopy is a typical technique that has been broadly used to probe photoexcited state dynamics in perovskites and other semiconductor materials. In TA measurements, a pump laser pulse is used to excite the perovskite films, and the induced absorption changes (ΔA) are recorded as a function of both wavelength and time. With the transmitted light as the probe (Figure 1a), the TA signal (ΔA) is mainly decided by the ratio of the intensity of transmitted probe light with and without pump excitation (see eq S1 in the SI), assuming that the loss of transmitted probe light completely results from the sample absorption. On the basis of the same experimental setup, transient reflection (TR) measurements can also be carried out by using the reflected probe light as detection signal (Figure 1b). The TR signal (ΔR/R) can also be determined by the ratio of the intensity of reflected probe light with and without pump excitation (see eq S4 in the SI). Unlike the TA measurements that mainly probe the bulk property of samples, the TR signal mainly detects the photoinduced reflection variations due to the refractive index change at the sample surface. Therefore, the TR spectrum and kinetics can be significantly different from those of TA even in the same sample. For example, previous TA and TR measurements have found dramatically faster carrier recombination kinetics on the surface than in the bulk of MAPbX3 perovskite films or single crystals because of the presence of more surface defects. There is an abnormal case in the regular TA measurements particularly when performed on the films with large and heterogeneous microstructures (e.g., films with poor coverage, large grains, and pinholes) because the loss of transmitted probe light in their TA measurements likely results not only from the sample absorption but also from the reflection of the film surface or the boundary of microstructures in samples. In this case, the measured transient spectrum, though collected in the transmittance mode as in TA, can contain contributions from both TA and TR signals (see Figure 1c and eq S6 in the SI). This could lead to distorted TA spectra and thus inaccurate analysis of photoinduced kinetics. A solution-processed organic or inorganic halide perovskite thin film is a typical material whose morphological microstructures were found to have significant impact on device performance. Although the photoinduced carrier dynamics in perovskite films has been extensively studied using TA spectroscopy, the possible artifacts in TA results induced by TR signal originating from the photoinduced reflectivity variation of film surfaces and microstructures have been overlooked. Herein, in order to clarify the influence of TR signal in the regular TA measurements, we performed a careful transient spectroscopic analysis on a series of MAPbBr3 perovskite films with different microstructure morphology. Meanwhile, TR measurements on MAPbBr3 single crystals (SCs) were carried out for comparison. We confirmed that the TA spectra measured in MAPbBr3 perovskite films with large and heterogeneous microstructures do comprise non-negligible TR signals from the photoinduced reflection of microstructures, with the weight of contribution increased from ~20 to ~100% as the size of the microstructure increased from <200 nm to 1?2 μm. The presence of TR signal leads to an “artifact” feature in the TA spectra and faster observed kinetics owing to the faster surface carrier recombination, which will thus mislead the analysis of bulk carrier dynamics. We also provided a method to reduce the TR signal in actual TA measurements by adding solvent with its refractive index close to the samples, by which the TR distortion can be suppressed to some extent.
关键词: artifacts,transient reflection,transient absorption,carrier dynamics,perovskite films,microstructures
更新于2025-09-23 15:23:52
-
Vapora??Deposited Cs <sub/>2</sub> AgBiCl <sub/>6</sub> Double Perovskite Films toward Highly Selective and Stable Ultraviolet Photodetector
摘要: Double perovskites have shown great potentials in addressing the toxicity and instability issues of lead halide perovskites toward practical applications. However, fabrication of high-quality double perovskite thin films has remained challenging. Here, sequential vapor deposition is used to fabricate high-quality Cs2AgBiCl6 perovskite films with balanced stoichiometry, superior morphology, and highly oriented crystallinity, with an indirect bandgap of 2.41 eV. Using a diode structure, self-powered Cs2AgBiCl6 ultraviolet (UV) photodetectors are demonstrated with high selectivity centered at 370 nm, with low dark current density (≈10?7 mA cm?2), high photoresponsivity (≈10 mA W?1), and detectivity (≈1012 Jones). Its detectivity is among the highest in all double-perovskite-based photodetectors reported to date and surpassing the performance of other perovskite photodetectors as well as metal oxide in the UV range. The devices also show excellent environmental and irradiation stability comparable to state-of-the-art UV detectors. The findings help pave the way toward application of double perovskites in optoelectronic devices.
关键词: double perovskite films,sequential vapor deposition,selective detection,ultraviolet photodetectors
更新于2025-09-23 15:19:57
-
Fabrication and optimization of nanocube mixed halide perovskite films for solar cell application
摘要: In this article, we report the tailoring of nanostructured mixed halide perovskite MAPb(I1-xBrx)3 films with tunable band gap fabricated by anion exchange reaction. In this process, we used PbBr2 and methyl ammonium iodide (MAI) in order to fabricate mixed halide perovskite films. We have observed an uncommon shape transformation from nanocube-hollow tetraoids-nanocubes/plate. The underlying mechanism of shape transformation was discussed based on experimental results. The driving force for such shape transformation is combined effect of anion exchange reaction between I? and Br? at the solid/liquid interface of PbBr2 and MAI, and mechanical driving force exerted by the spin coating process. The shape transformation is highly reproducible, verified by two step process, dipping as well as spinning process. The best performing device using the nanostructured perovskite films in a device architecture FTO/TiO2/MAPb(I1-xBrx)3/Spiri-OMeTAD/Au shows a current density (Jsc,) of 23.58 mA/cm2, open circuit voltage (Voc) of 0.891 V and fill factor (FF) of 0.608, with a power conversion efficiency (η) of 12.79% in forward sweep. In reverse sweep, the device shows the Jsc (mA/cm2), Voc (V), FF, and η (%) are 23.852, 0.891, 0.716 and 15.237, respectively.
关键词: Nanostructured perovskite films,Anion exchange reaction,Shape transformation,Mixed halide perovskite films,Perovskite solar cell
更新于2025-09-19 17:13:59
-
Showerhead-Assisted Chemical Vapor Deposition of Perovskite Films for Solar Cell Application
摘要: In the last years, perovskite solar cells have attracted great interest in photovoltaic (PV) research due to their possibility to become a highly efficient and low-cost alternative to silicon solar cells. Cells based on the widely used Pb-containing perovskites have reached power conversion efficiencies (PCE) of more than 20 %. One of the major hurdles for the rapid commercialization of perovskite photovoltaics is the lack of deposition tools and processes for large areas. Chemical vapor deposition (CVD) is an appealing technique because it is scalable and furthermore features superior process control and reproducibility in depositing high-purity films. In this work, we present a novel showerhead-based CVD tool to fabricate perovskite films by simultaneous delivery of precursors from the gas phase. We highlight the control of the perovskite film composition and properties by adjusting the individual precursor deposition rates. Providing the optimal supply of precursors results in stoichiometric perovskite films without any detectable residues.
关键词: precursor deposition rates,stoichiometric perovskite films,showerhead-based CVD,chemical vapor deposition,perovskite solar cells
更新于2025-09-19 17:13:59
-
Polymer Amplification to Improve Performance and Stability toward Semitransparent Perovskite Solar Cells Fabrication
摘要: The performance of methylammonium lead triiodide (CH3NH3PbI3)-based solar cells depends on the crystallization and controlled microstructure. Despite their high performance, long-term stability is a paramount factor toward large area fabrication and potential industrialization. Herein, poly(vinylidene fluoride–trifluoro ethylene) (P(VDF-TrFE)) is used as an additive into a low concentration–based perovskite precursor solution to control the crystallinity and microstructure. Perovskite layers of lower thicknesses are derived from low precursor concentration, however, they often suffer from severe voids and roughness. Introducing judicious quantities of P(VDF-TrFE) improves the surface coverage and smoothness, as well as reduce the grain boundaries in the perovskite. An array of characterization techniques are used to probe the structural, microstructural, and spectroscopic properties. Impedance spectra suggest that the P(VDF-TrFE) can improve the carrier lifetime and reduce the charge transfer resistance, which in turn allows improvment of photovoltaic performance. For an optimized concentration of P(VDF-TrFE), the fabricated semitransparent solar cells yield a power conversion efficiency in excess of 10%, which supersedes pristine devices, along with improved stability. The device architecture and the fabrication technique provide an effective route to fabricate cost effective and visible-light-semitransparent perovskite solar cells.
关键词: poly(vinylidene fluoride–trifluoro ethylene),perovskite solar cells,stability,microstructured control,semitransparent perovskite films
更新于2025-09-19 17:13:59
-
Effects of intrinsic and atmospherically induced defects in narrow bandgap (FASnI <sub/>3</sub> ) <sub/><i>x</i> </sub> (MAPbI <sub/>3</sub> ) <sub/> 1a?? <i>x</i> </sub> perovskite films and solar cells
摘要: Narrow bandgap mixed tin (Sn) + lead (Pb) perovskites are necessary for the bottom sub-cell absorber in high efficiency all-perovskite poly-crystalline tandem solar cells. We report on the impact of mixed cation composition and atmospheric exposure of perovskite films on sub-gap absorption in films and performance of solar cells based on narrow bandgap mixed formamidinium (FA) + methylammonium (MA) and Sn + Pb halide perovskites, (FASnI3)x(MAPbI3)1?x. Structural and optical properties of 0.3 ≤ x ≤ 0.8 (FASnI3)x(MAPbI3)1?x perovskite thin film absorbers with bandgaps ranging from 1.25 eV (x = 0.6) to 1.34 eV (x = 0.3) are probed with and without atmospheric exposure. Urbach energy, which quantifies the amount of sub-gap absorption, is tracked for pristine perovskite films as a function of composition, with x = 0.6 and 0.3 demonstrating the lowest and highest Urbach energies of 23 meV and 36 meV, respectively. Films with x = 0.5 and 0.6 compositions show less degradation upon atmospheric exposure than higher or lower Sn-content films having greater sub-gap absorption. The corresponding solar cells based on the x = 0.6 absorber show the highest device performance. Despite having a low Urbach energy, higher Sn-content solar cells show reduced device performances as the amount of degradation via oxidation is the most substantial.
关键词: solar cells,sub-gap absorption,Urbach energy,perovskite films,narrow bandgap
更新于2025-09-19 17:13:59
-
Effect of energy transfer on the optical properties of surface-passivated perovskite films with CdSe/ZnS quantum dots
摘要: Surface passivation is an effective method to protect the surfaces and improve the luminescence properties of perovskite (PS) films. CdSe/ZnS core-shell quantum dots (QDs) have been employed for surface passivation of PS films because of their size-dependent tunable bandgaps. Herein, the energy transfer (ET) behavior of CH3NH3PbI2Br PS films covered with CdSe/ZnS QDs (QD/PS hybrid structures) is characterized by using photoluminescence (PL) and time-resolved PL spectroscopy. The PL decay time and the integrated PL intensity of the QD/PS hybrid structure increase compared with those of the bare PS films, owing to ET from the QDs to the PS and reduced charge traps. The ET efficiency increases from ~7% to 63% for the QD/PS hybrid structure when the core diameter of the QDs decreases from 6.5 to 2.7 nm, respectively. This can be explained by the charge transfer rate enhancement due to the control of energy level alignment of QDs. These results allow us to understand fundamental mechanisms such as ET from QDs to PS films as a function of the size of the QD.
关键词: CdSe/ZnS quantum dots,perovskite films,energy transfer,photoluminescence,surface passivation
更新于2025-09-12 10:27:22